MAX29X是美国MAXIM公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。关键词:开关电容、滤波器、设计 1 引言 开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。 MAXIM公司在模拟器件生产领域颇具影响,它生产MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin DIP封装)等优点,在ADC的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。 MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。MAX292/296为贝塞尔(Bessel)滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。关于巴特活和贝塞尔滤波器的特性可能图1来说明。图1的踪迹A为加到滤波器输入端的3kHz的脉冲,这里我们把滤波器的截止频率设为10kHZ。踪迹B通过MAX292/296后的波形。从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。方波通过MAX291/295之后,由于不同频率的信号产生的时延不同,输出波形中就出现了尖峰(overshoot)和铃流(ringing)。 MAX293/294/297为8阶圆型(Elliptic)滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。在椭圆型滤波器中,第一个传输零点后输出将随频率的变高而增大,直到第二个零点处。这样几番重复就使阻事宾频响呈现波浪形,如图2所示。阻带从fS起算起,高于频率fS处的增益不会超过fS处的增益。在椭圆型滤波中,通频带内的增益存在一定范围的波动。椭圆型滤波器的一个重要参数就是过渡比。过渡比定义为阻带频率fS与拐角频率(有时也等同为截止频率)由时钟频率确定。时钟既可以是外接的时钟,也可以是自己的内部时钟。使用内部时钟时只需外接一个定时用的电容既可。 在MAX29X系列滤波器集成电路中,除了滤波器电路外还有一个独立的运算放大器(其反相输入端已在内部接地)。用这个运算放大器可以组成配合MAX29X系列滤波器使用后的滤波、反混滤波等连续时间低通滤波器。 下面归纳一下它们的特点: ●全部为8阶低通滤波器。MAX291/MAX295为巴特沃思滤波器;MAX292/296为贝塞尔滤波器;MAX293/294/297为椭圆滤波器。 ●通过调整时钟,截止频率的调整范围为:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。 ●既可用外部时钟也可用内部时钟作为截止频率的控制时钟。 ●时钟频率和截止频率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。 ●既可用单+5V电源供电也可用±5V双电源供电。 ●有一个独立的运算放大器可用于其它应用目的。 ●8-pin DIP、8-pin SO和宽SO-16多种封装。2 管脚排列和主要电气参数 MAX29X系列开头电容滤波器的管脚排列如图3所示。 管脚功能定义如下: CLK:时钟输入。 OP OUT:独立运放的输出端。 OP INT:独立运放的同相输入端。 OUT:滤波器输出。 IN:滤波器输入。 V-:负电源 。双电源供电时搛-2.375~-5.5V之间的电压,单电源供电时V--=-V。 V+:正电源。双电源供电时V+=+2.35~+5.5V,单电源供电时V+=+4.75~+11.0V。 GND:地线。单电源工作时GND端必须用电源电压的一半作偏置电压。 NC:空脚,无连线。 MAX29X的极限电气参数如下: 电源(V+~V-):12V 输入电压(任意脚):V--0.3V≤VIN≤V++0.3V 连续工作时的功耗:8脚塑封DIP:727mW;8脚SO:471mW;16脚宽SO:762mW;8脚瓷封DIP:640mW。 工作温度范围:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存温度范围:-65℃~+160℃;焊接温度(10秒):+300℃; 大多数的形状电容滤波器都采用四节级连结构,每一节包含两个滤波器极点。这种方法的特点就是易于设计。但采用这种方法设计出来的滤波器的特性对所用元件的元件值偏差很敏感。基于以上考虑,MAX29X系列用带有相加和比例功能的开关电容持了梯形无源滤波器,这种方法保持了梯形无源滤波器的优点,在这种结构中每个元件的影响作用是对于整个频率响应曲线的,某元件值的误差将会分散到所有的极点,因此不值像四节级连结构那样对某一个极点特别明显的影响。3 MAX29X的频率特性 MAX29X的频率特性如图4所示。图中的fs都假定为1kHz。4 设计考虑 下面对MAX29X系列形状电容滤波器的使用做些讨论。4.1 时钟信号 MAX29X系列开头电容滤波器推荐使用的时钟信号最高频率为2.5MHz。根据对应的时钟频率和拐角频率的比值,MAX291/MAX292/MAX293/MAX294的拐角频率最高为25kHz.MAX295/MAX296/MAX297的拐角频率最高为50kHz 。 MAX29X系列开关电容滤波器的时钟信号既可幅外部时钟直接驱动也可由内部振荡器产生。使用外部时钟时,无论是采用单电源供电还是双电源供电,CLK可直接和采用+5V供电的CMOS时钟信号发生器的输出相连。通过调整外部时钟的频率,可完成滤波器拐角的实时调整。 当使用内部时钟时,振荡器的频率由接在CLK端上的电容VCOSC决定: fCOSC (kHz)=105/3COSC (pF) 4.2 供电 MAX29X系列开关电容滤波器既可用单电源工作也可用双电源工作。双电源供电时的电源电压范围为±2.375~±5.5V。在实际电路中一般要在正负电源和GND之间接一旁路电容。 当采用单电源供电时,V-端接地,而GND端要通过电阻分压获得一个电压参考,该电压参考的电压值为1/2的电源电压,参见图5。4.3 输入信号幅度范围限制 MAX29X允许的输入信号的最大范围为V--0.3V~V++0.3V。一般情况下在+5V单电源供电时输入信号范围取1V~4V,±5V双电源供电时,输入信号幅度范围取±4V。如果输入信号超过此范围,总谐波失真THD和噪声就大大增加;同样如果输入信号幅度过小(VP-P<1V),也会造成THD和噪声的增加。4.4 独立运算放大器的用法 MAX29X中都设计有一个独立的运算放大器,这个放大器和滤波器的实现无直接关系,用这个放大器可组成一个一阶和二阶滤波器,用于实现MAX29X之前的反混叠滤波功能鄞MAX29X之后的时钟噪声抑制功能。这个运算放大器的反相端已在内部和GND相连。 图6是用该独立运放组成的2阶低通滤波器的电路,它的拐角频率为10kHz,输入阻抗为22Ω,可满足MAX29X形状电容滤波器的最小负载要求(MAX29X的输出负载要求不小于20kΩ)可以通过改变R1、R2、R3、C1、C2的元件值改变拐角频率。具体的元件值和拐角频率的对应关系参见表1。
上传时间: 2013-10-18
上传用户:macarco
FPGA上的VERILOG语言编程。通过查找表实现直接数字频率合成。在主控部分通过键盘选择正弦波,方波,三角波,斜波,以及四种波形的任意两种的叠加,以及四种波形的叠加;通过控制频率控制字C的大小,以控制输出波形频率,实现1Hz的微调;通过地址变换实现波形相位256级可调;通过DAC0832使波形幅值256级可调;通过FPGA内部RAM实现波形存储回放;并实现了每秒100HZ扫频。
上传时间: 2015-09-27
上传用户:songrui
电子电路单片机设计毕业设计论文资料软硬件设计50例资料合集资料0652、14093组成的脉宽调制器电路(电机调速).rar0653、CMOS单通道调制电路.rar0654、DC-AC变换器.rar0655、DC-AC变换器LCD显示电子温度计.rar0656、DC-AC变换器PWM控制式电机速度控制电路.rar0657、DC-AC变换器TC4069UB组成的方波振荡器.rar0658、DC-AC变换器按钮型游戏基准电路.rar0659、DC-AC变换器变形多谐振荡器.rar0660、DC-AC变换器标准多谐振荡器.rar0661、不规则变换循环LED闪烁电路.rar0662、采用3524的PWM式电机速度控制电路.rar0663、超声波鱼缸加氧器.rar0664、车辆转向灯电路.rar0665、出租车空车灯LED环形闪烁电路.rar0666、触摸调光灯.rar0667、触摸开关.rar0668、触摸控制定时器.rar0669、触摸控制转换开关.rar0670、串联式多谐振荡器.rar0671、串入式声控延时开关.rar0672、单结晶体管多谐振荡器.rar0673、单脉冲控制转换开关.rar0674、单脉冲控制转换开关基本电路.rar0675、单稳态多谐振荡器.rar0676、单稳态多谐振荡器组成的定时器电路.rar0677、单轴操纵杆接口电路.rar0678、低电平输出光控电路.rar0679、第三刹车灯电路.rar0680、电场与漏电检测器.rar0681、电动车充电自动控制电路.rar0682、电话机检修测试仪.rar0683、电话检修仪.rar0684、电子节拍器.rar0685、电子锁.rar0686、电子音乐门铃.rar0687、短波无线监听发射器1(100MHz).rar0688、短波无线监听发射器2(100MHz).rar0689、短路检测式报警电路.rar0690、断线检测式报警电路.rar0691、断线式防贼报警电路.rar0692、断续音报警信号发生器.rar0693、多功能密码锁.rar0694、多谐—张弛振荡器.rar0695、发射极耦合式多谐振荡器.rar0696、方波发生器.rar0697、非对称多谐振荡器.rar0698、峰谷用电定时器.rar0699、改进型发射极耦合式多谐振荡器.rar0700、改进型模拟PUT(可编程单结晶体管)器件振荡器.rar
上传时间: 2021-12-10
上传用户:
该文研究了一种新型电压空间矢量控制两相逆变器—异步电动机的变频调速系统,该系统可以广泛应用于小功率、宽调速运行的场合.该项研究完成两相逆变器的设计,并组成了试验用的两相逆变器—异步电动机系统.系统是一个转速开环的变频调速系统,由单片机机控制电路、功率驱动电路、逆变器主电路、保护电路组成.论文通过对电机基本方程进行Kron变换和对称分量变换,分别建立了系统完整的数学模型,编制了动态和稳态仿真程序,并对系统进行了仿真,对系统的动态、稳态性能进行分析.相对于方波等其它供电方式的控制,采用电压空间矢量技术在小功率两相异步电动机的变频调速控制上的应用可使转矩脉动减少,效率提高,具有一定的经济性和实用性.
上传时间: 2013-08-01
上传用户:tinawang
超声波电机(Ultrasonic Motor,简称USM)是近二十年来发展起来的一种新型驱动装置,该电机不同于传统的电磁感应电机,它是利用压电陶瓷的逆压电效应激发超声振动,借助弹性体谐振放大,通过摩擦耦合产生旋转运动或直线运动.这种电机的具有响应快、结构紧凑、低转速、大力矩、不受电磁干扰、断电自锁等优点,在微型机械、机器人、精密仪器、家用电器、航空航天、汽车等方面有着广泛的应用前景.随着超声波电机的推广应用和产业化发展的需要,对超声波电机的驱动和控制技术的研究就非常必要了,小型化、通用化、高性能的驱动电源和简单而又实用的控制技术已成为国内外研究的热点.该文对于单一的定位控制,研究一种简单且控制精度高的控制算法,结合所研制的纵扭复合型超声波电机样机,实现了高精度(0.010度)的定位控制,另对基于高性能DSP的驱动电源进行了初步的探讨和研究,研制了通用性较高的驱动电源.该文开展的主要研究工作和取得的成果如下:1.简要地介绍了超声波电机的原理、发展历史和特点,重点分析了超声波电机驱动电源和定位控制的研究进展和存在的问题,从而引出该硕士论文的研究意义和主要内容.2.从理论和实验上揭示这种电机具有的高分辨率和步进特性实质,提出了利用此特性实现高精度的定位控制策略——步进定位法,并分析了影响其定位精度的因素,结合所研制的纵扭复合型超声波电机样机,实现了高精度(0.010度)的定位控制,并确定了相关控制参数的选择准则.3.简要介绍了常用开关变换器结构,设计了以MOSFET为开关器件的半桥式逆变功率电路.介绍了高性能DSP(TMS320LF2407)为核心的控制信号发生电路和以UC3842为控制芯片的可调压直流电源,结合控制电路和功率变换电路获得了驱动超声波电机所需两项幅值、频率、相位可调的交变方波,具有较高的通用性,为进一步开展运用较复杂控制策略的超声波电机位置和速度伺服控制研究打下一定基础.
上传时间: 2013-04-24
上传用户:hfmm633
论文针对两轮电动车辆(EV)用稀土永磁(REPM)无刷同步电动机(SM),分别进行了正弦波和方波两种工作方式下的控制技术研究。论文在全面分析正弦波和方波无刷电机工作原理、调速控制方法及其性能特点的基础上,分别对36VDC电动自行车和96VDC电动摩托车用稀土永磁无刷同步电动机进行了正弦波、方波驱动系统的构建和控制电路设计。 论文采用高集成度智能专用芯片与廉价的EEPROM配合作为核心控制单元,生成稳定的SPWM脉冲信号,构成36VDC正弦波驱动系统,其外围电路简单紧凑,克服了传统SPWM信号产生方法中微处理机程序容易“跑飞”和模拟系统复杂的缺陷。同时,采用专用PWM调制芯片和硬件逻辑器件构成96VDC方波驱动系统,采用宽范围输入电压的开关电源实现系统的控制供电,将直流电机系统常用的电流截止负反馈电路引入无刷电机驱动系统中,提高了大功率方波驱动系统的可靠性,其原理样机性能稳定,负载电流可达30A。 两种系统测试结果分析对比表明:相同结构的稀土永磁无刷同步电动机,采用正弦波或方波驱动控制各有利弊。正弦波驱动采用变频调速,电机运行平稳,利用弱磁调速,还可实现超高速恒功率运行,但易于失步;而方波驱动采用PWM调压调速,电机则具有良好的控制特性,机械特性较硬,起动转矩大,车辆提速快,适于爬坡,但转矩脉动较大。 综上所述,采用方波驱动更适合于两轮电动车辆的运行特点,论文介绍的方波驱动系统在电动车辆应用领域有着较好的发展前景。
上传时间: 2013-04-24
上传用户:yangbo69
在实际应用中,对永磁同步电机控制精度的要求越来越高。尤其是在机器人、航空航天、精密电子仪器等对电机性能要求较高的领域,系统的快速性、稳定性和鲁棒性能好坏成为决定永磁同步电机性能优劣的重要指标。传统电机系统通常采用PID控制,其本质上是一种线性控制,若被控对象具有非线性特性或有参变量发生变化,会使得线性常参数的PID控制器无法保持设计时的性能指标;在确定PID参数的过程中,参数整定值是具有一定局域性的优化值,并不是全局最优值。实际电机系统具有非线性、参数时变及建模过程复杂等特点,因此常规PID控制难以从根本上解决动态品质与稳态精度的矛盾。永磁同步电机是典型的多变量、参数时变的非线性控制对象。先进控制方法(诸如智能控制、优化算法等)研究应用的发展与深入,为控制复杂的永磁同步电机系统开辟了崭新的途径。由于先进控制方法摆脱了对控制对象模型的依赖,能够在处理不精确性和不确定性问题中有可处理性、鲁棒性,因而将其引入永磁同步电机控制已成为一个必然的趋势。本文根据系统实现目标的不同,选取相应的先进控制方法,并与PID控制相结合,对永磁同步电机各方面性能进行有针对性的优化,最终使其控制精度得到显著的提高。为达到对永磁同步电机进行性能优化的研究目的,文中首先探讨了正弦波永磁同步电机和方波永磁同步电机的运行特点及控制机理,通过建立数学模型,对相应的控制系统进行了整体分析。针对永磁同步电机非线性、强耦合的特点,设计了矢量控制方式下的永磁同步电机闭环反馈控制系统。结合常规PID控制,将模糊控制、遗传算法、神经网络和人工免疫等多种先进控制方法应用于永磁同步电机调速系统、伺服系统和同步传动系统的控制器设计中,以满足不同控制系统对电机动、静态性能的要求以及对调速性能或跟随性能的侧重。实验结果表明,采用先进控制方法的永磁同步电机具有较好的动态性能、抗扰动能力以及较强的鲁棒性能;与传统PID控制相比,系统的控制精度得到了明显提高。研究结果验证了先进控制方法应用于永磁同步电机性能优化的有效性和实用性。
上传时间: 2013-04-24
上传用户:shinesyh
随着国民经济的发展和社会的进步,人们越来越需要便捷的交通工具,从而促进了汽车工业的发展,同时汽车发动机检测维修等相关行业也发展起来。在汽车发动机检测维修中,发动机电脑(Electronic Control.Unit-ECU)检测维修是其中最关键的部分。发动机电脑根据发动机的曲轴或凸轮轴传感器信号控制发动机的喷油、点火和排气。所以,维修发动机电脑时,必须对其施加正确的信号。目前,许多发动机的曲轴和凸轮轴传感器信号已不再是正弦波和方波等传统信号,而是多种复杂波形信号。为了能够提供这种信号,本文研究并设计了一种能够产生复杂波形的低成本任意波形发生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形发生器依据直接数字频率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行设计现场可编程门阵列(FPGA)的方案实现频率合成,扩展数据存储器存储波形的量化幅值(波形数据),在微控制单元(MCU)的控制与协调下输出频率和相位均可调的信号。 任意波形发生器主要由用户控制界面、DDFS模块、放大及滤波、微控制器系统和电源模块五部分组成。在设计中采用FPGA芯片EPF10K10QC208-4实现DDFS的硬件算法。波形调整及滤波由两级放大电路来完成:第一级对D/A输出信号进行调整;第二级完成信号滤波及信号幅值和偏移量的调节。电源模块利用三端集成稳压器进行电压值变换,利用极性转换芯片ICL7660实现正负极性转换。 该任意波形发生器与通用模拟信号源相比具有:输出频率误差小,分辨率高,可产生任意波形,成本低,体积小,使用方便,工作稳定等优点,十分适合汽车维修行业使用,具有较好的市场前景。
上传时间: 2013-05-28
上传用户:cylnpy
40kHZ 超声波发射电路之一,由F1~F3 三门振荡器在F3 的输出为40kHZ 方波,工作频率主要由C1、R1 和RP 决定,用RP 可调电阻来调节频率。 F3 的输出激励换能器T40-1
上传时间: 2013-07-28
上传用户:wanghui2438
超声波电机(Ultrasonic motors,简称USM)是一种全新原理的直接驱动电机,它利用压电陶瓷逆压电效应激发的超声振动作为驱动力,通过定转子间的摩擦力来驱动转子运动。与传统的电磁电机相比,它具有低速大转矩、无电磁干扰、动作响应快、运行无噪声、无输入自锁等卓越特性,在非连续运动领域、精密控制领域比传统的电磁电机性能优越得多。超声波电机在工业控制系统、汽车专用电器、精密仪器仪表、办公自动化设备、智能机器人等领域有广阔的应用前景,近年来倍受科技界和工业界的重视,成为当前机电控制领域的一个研究热点。 本文主要以行波型超声波电机的驱动控制技术为研究对象,引入嵌入式系统理念,设计并制作了超声波电机的驱动控制系统,并对超声波电机的速度与定位控制做了深入的研究。本文主要研究内容及成果如下: 介绍了超声波电机的工作原理、特点及其应用前景,总结了国内外超声波电机驱动控制技术的发展历史和研究现状,以及今后我国超声波电机驱动控制技术的发展方向,明确了本文的研究内容。 结合嵌入式系统特点及其开发方法,详细介绍了超声波电机嵌入式驱动控制系统的硬件和软件设计过程,并总结了硬件、软件的调试过程。最后,对所设计系统性能进行了实验测试和数据分析。 采用DDS技术解决超声波电机所需要的高频驱动电源和数字控制的问题。本文设计的以ARM控制器为核心,频率、相位、幅值均可调的双通道信号发生器,具有频率和相位差控制精度高的特点。 本文介绍了速度与位置的常用控制策略。设计并搭建了基于增量式PID的速度和基于模糊PID的位置控制系统。速度控制采用增量式PID调节,其控制策略简单、易行,通过实验选择合适的参数能适应一般的控制精度要求。定位控制则采用模糊PID控制策略,该策略将模糊控制不需要精确的数学模型、收敛速度快的特点与PID简单易行、能消除稳态误差的优点相结合,改善了模糊控制器稳态性能,使电机定位控制精度达到0.0880。
上传时间: 2013-07-16
上传用户:wdq1111