虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

单端反激设计

  • PIC单片机设计电子密码锁

    介绍用PIC16F84单片机制作的电子密码锁。PIC16F84单片机共18个引脚,13个可用I/O接口。芯片内有1K×14的FLASHROM程序存储器,36×8的静态RAM的通用寄存器,64×8的EEPROM的数据存储器,8级深度的硬堆栈。 用PIC单片机设计的电子密码锁微芯公司生产的PIC8位COMS单片机,采用类RISC指令集和哈弗总线结构,以及先进的流水线时序,与传统51单片机相比其在速度和性能方面更具优越性和先进性。PIC单片机的另一个优点是片上硬件资源丰富,集成常见的EPROM、DAC、PWM以及看门狗电路。这使得硬件电路的设计更加简单,节约设计成本,提高整机性能。因此PIC单片机已成为产品开发,尤其是产品设计和研制阶段的首选控制器。本文介绍用PIC16F84单片机制作的电子密码锁。PIC16F84单片机共18个引脚,13个可用I/O接口。芯片内有1K×14的FLASHROM程序存储器,36×8的静态RAM的通用寄存器,64×8的EEPROM的数据存储器,8级深度的硬堆栈。硬件设计  电路原理见图1。Xx8位数据线接4x4键盘矩阵电路,面板布局见表1,A、B、C、D为备用功能键。RA0、RA7输出4组编码二进制数据,经74LS139译码后输出逐行扫描信号,送RB4-RB7列信号输入端。余下半个139译码器动扬声器。RB2接中功率三极管基极,驱动继电器动作。有效密码长度为4位,根据实际情况,可通过修改源程序增加密码位数。产品初始密码为3345,这是一随机数,无特殊意义,目的是为防止被套解。用户可按*号键修改密码,按#号键结束。输入密码并按#号确认之后,脚输出RB2脚输出高电平,继电器闭合,执行一次开锁动作。  若用户输入的密码正确,扬声器发出一声稍长的“滴”提示声,若输入的密码与上次修改的不符,则发出短促的“滴”声。连续3次输入密码错误之后,程序锁死,扬声器报警。直到CPU被复位或从新上电。软件设计  软件流程图见图3。CPU上电或复位之后将最近一次修改并保存到EEPROM的密码读出,最为参照密匙。然后等待用户输入开锁密码。若5分钟以内没有接受到用户的任何输入,CPU自动转入掉电模式,用户输入任意值可唤醒CPU。每次修改密码之后,CPU将新的密码存入内部4个连续的EEPROM单元,掉电后该数据任有效。每执行一次开锁指令,CPU将当前输入密码与该值比较,看是否真确,并给出相应的提示和控制。布     局  所有元件均使用SMD表贴封装,缩小体积,便于产品安装,60X60双面PCB板,顶层是一体化输入键盘,底层是元件层。成型后的产品体积小巧,能很方便的嵌入防盗铁门、保险箱柜。

    标签: PIC 单片机设计 电子密码锁

    上传时间: 2013-10-31

    上传用户:uuuuuuu

  • 用单片机AT89C51改造普通双桶洗衣机

    用单片机AT89C51改造普通双桶洗衣机:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。电路工作原理  本数字电容表以电容器的充电规律作为测量依据,测试原理见图1。电源电路图。 压E+经电阻R给被测电容CX充电,CX两端原电压随充电时间的增加而上升。当充电时间t等于RC时间常数τ时,CX两端电压约为电源电压的63.2%,即0.632E+。数字电容表就是以该电压作为测试基准电压,测量电容器充电达到该电压的时间,便能知道电容器的容量。例如,设电阻R的阻值为1千欧,CX两端电压上升到0.632E+所需的时间为1毫秒,那么由公式τ=RC可知CX的容量为1微法。  测量电路如图2所示。A为AT89C2051内部构造的电压比较器,AT89C2051 图2 的P1.0和P1.1口除了作I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器,P3.6口在AT89C2051外部无引脚。电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。以P3.6口的输出电平为依据,用AT89C2051内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。整机电路见图3。电路由单片机电路、电容充电测量电路和数码显示电路等 图3 部分组成。AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。由于999K和1M相对误差较小,所以R2还是取1M。数码管DS1-DS4、电阻R8-R14等组成数码显示电路。本机采用动态扫描显示的方式,用软件对字形码译码。P3.0-P3.5、P3.7口作数码显示七段笔划字形码的输出,P1.3-P1.6口作四个数码管的动态扫描位驱动码输出。这里采用了共阴数码管,由于AT89C2051的P1.3-P1.6口有25mA的下拉电流能力,所以不用三极管就能驱动数码管。R8-R14为P3.0-P3.5、P3.7口的上拉电阻,用以驱动数码管的各字段,当P3的某一端口输出低电平时其对应的字段笔划不点亮,而当其输出高电平时,则对应的上拉电阻即能点亮相应的字段笔划。

    标签: 89C C51 AT 89

    上传时间: 2013-12-31

    上传用户:ming529

  • 用单片机制作多功能莫尔斯码电路

    用单片机制作多功能莫尔斯码电路:用单片机制作多功能莫尔斯码电路莫尔斯电码通信有着悠久的历史,尽管它已被现代通信方式所取代,但在业余无线电通信和特殊的专业场合仍具有重要的地位,这是因为等幅电码通信的抗干扰能力是其它任何一种通信方式都无法相比的。在短波波段用几瓦的功率即可进行国际间的通信,收发射设备简单易制成本低廉,所以深受业余无线电爱好者的喜爱,是业余无线电高手必备的技能。要想熟练掌握莫尔斯电码的收发技术除了持之以恒的毅力外,还需要相关的设备。设计本电路的目的就是给爱好者提供一个实用和训练的工具。  一、功能简介    本电路可以配合自动键体和手动键体,产生莫尔斯码控制信号,设有16种速度,从初学者到操作高手都能适用。监听音调也有16种,均可以通过功能键进行选择。可以按程序中设定好的呼号自动呼叫,设有听抄练习功能,听抄练习有短码和混合码两种模式,分别对10个数字和常用的38个混合码模拟随机取样,产生分组报码,供爱好者提高抄收水平之用,速度低4档的听抄练习是专为初学者所设,内容是时间间隔较长的单字符。设有PTT开关键,可以决定是否控制发射机工作,不需要反复通断控制线。无论当前处于呼叫状态还是听抄状态只要电键接点接通则自动转到人工发报程序。4分钟内不使用电路将自动关闭电源,只有按复位键才能重新开始工作。先按住听抄练习键复位则进入短码练习状态,其它功能不变。从开机到自动关机执行每个功能都有不同的莫尔斯码提示音。本电路具有较强的抗高低频干扰的能力和使用方便的大电流开关接口,以适应不同的发射设备。    二、硬件电路原理硬件电路如图1所示。设计电路的目的在于方便实用,以免在紧张的操作中失误,所以除了听抄练习键外其它键没有定义复用功能。各键的作用在图中已经标出。PTT控制在每次复位时处于关闭状态,每按动一次PTT功能键则改变一次状态,这样可以使用软件开关控制发射。 PTT处于控制状态时发光二极管随控制信号闪亮。考虑到自制设备及淘汰军用设备与高档设备控制电流的不同,PTT开关管采用了2SC2073,可以承受500mA的电流,同时还增加了无极性PTT开关电路,无论外部被控制的端口直流极性如何加到VT3的极性始终不变,供有兴趣的爱好者实验。应该注意,如果被控制的负载是感性,则电感两端必须并联续流二极管,除自制设备外成品机在这方面一般没有什么问题。手动键只有一个接点,接通后产生连续的音频和发射控制信号。在本电路中手动键的输入端是P1.5 ,程序不断检测P1.5电平,当按键按下时P1.5电平为0,程序转入手动键子程序。 自动键的接点分别接到P1.3和P1.4 ,同样当程序检测到有接点闭合时便自动产生“点”或“划”。音频信号从P输出,经VT1放大后推动扬声器发音。单片机的I/O口在输入状态下阻抗较高,容易受到高低频信号干扰,所以在每个输入端口和三极管的be端并联电阻和高频旁路电容,确保在较长的电键连线和大功率发射时电路工作稳定。图2是印刷电路版图,尺寸为110mmX85mm,扬声器用粘合剂直接粘接在电路版有铜箔的面。    三、软件设计方法  “点”时间长度是莫尔斯电码中的基本时间单位。按规定“划”的时间长度不小于三个“点”,同字符中“点”与“划”的间隔不小于一个“点”,字符之间不小于一个“划”,词与词之间不应小于五个“点”。在本程序中用条件转移指令来产生“点”时间长度。通过速度功能键功可以设置16种延时参数。用T0中断产生监听音频信号,并将中断设为优先级,保证在听觉上纯正悦耳。T1用于自动关机计时,如果不使用任何功能四分钟后将向PCON 位写1,单片机进入休眠状态,此时耗电量仅有几个微安。自动键的“点”或“划”以及手动键的连续发音都是子程序的反复调用。P1.2对地短接时自动呼叫可设定为另一内容。为了便于熟悉汇编语言的读者对发音内容进行修改,这里介绍发音字符的编码方法。莫尔斯码的信息与计算机中二进制恰好相同,我们可以用0表示“点”,用1表示“划”。提示音、自动呼叫、听抄内容等字符是预先按一定编码方式存储在程序中的常数。每个字符的莫尔斯码一般是由1至6位“点”、“划”组成,也就是发音次数最多6次。程序中每个字符占用1个字节,字符时间间隔不占用字节,但更长的延时或发音结束信息占用一个字节。我们用字节的低三位表示字节的性质,对于5次及5次以下发音的字符我们用存储器的高5位存储发音信息,发音顺序由高位至低位,用低3位存储发音次数,发音时将数据送入累加器A,先得到发音次数,然后使A左环移,对E0进行位寻址,判断是发“点”还是“划”,环移次数由发音次数决定。对于6次发音的字符不能完全按照上述编码规则,否则会出现信息重叠,如果是6次发音且最后一次是“划”我们把发音次数定义为111B,因为这时第6次位寻址得到的是1。如果第6次发音是“点”,那么这个字符的低三位定义为000B。字符间隔时间由程序自动产生,更长的时间隔或结束标志由字节低三位110B来定义,高半字节表示字符间隔的倍数,例如26H表示再加两倍时间间隔。如果字节为06H则表示读字符程序结束,返回主程序。更详细的内容不再赘述,读者可阅读源程序。四、使用注意事项手动键的操作难度相对大一些,时间节拍全由人掌握,其特点是发出的电码带有“人情味”。自动键的“点”、“划”靠电路产生,发音标准,容易操作,而且可以达到相当快的速度,长时间工作也不易疲劳。在干扰较大、信号微弱的条件下自动键码的辨别程度好于手动键码。初学者初次使用手动键练习发报要有老师指导,且不可我行我素,一旦养成不正确的手法则很难纠正。在电台上时常听到一些让对方难以抄收的电码,这可能会使对方反感而拒绝回答。使用自动键也应在一定的听抄基础上再去练习。在暂时找不老师的情况下可多练习听力,这对于今后能够发出标准正确的电码非常有益。

    标签: 用单片机 多功能 莫尔斯 电路

    上传时间: 2013-10-31

    上传用户:sdq_123

  • AVR单片机GCC程序设计

    AVR单片机GCC程序设计:第一章 概述1.1 AVR 单片机GCC 开发概述1.2 一个简单的例子1.3 用MAKEFILE 管理项目1.4 开发环境的配置1.5 实验板CA-M8第二章 存储器操作编程2.1 AVR 单片机存储器组织结构2.2 I/O 寄存器操作2.3 SRAM 内变量的使用2.4 在程序中访问FLASH 程序存储器2.5 EEPROM 数据存储器操作2.6 avr-gcc 段结构与再定位2.7 外部RAM 存储器操作2.8 堆应用第三章 GCC C 编译器的使用3.1 编译基础3.2 生成静态连接库第四章 AVR 功能模块应用实验4.1 中断服务程序4.2 定时器/计数器应用4.3 看门狗应用4.4 UART 应用4.5 PWM 功能编程4.6 模拟比较器4.7 A/D 转换模块编程4.8 数码管显示程序设计4.9 键盘程序设计4.10 蜂鸣器控制第五章 使用C 语言标准I/O 流调试程序5.1 avr-libc 标准I/O 流描述5.2 利用标准I/0 流调试程序5.3 最小化的格式化的打印函数第六章 CA-M8 上实现AT89S52 编程器的实现6.1 编程原理6.2 LuckyProg2004 概述6.3 AT989S52 isp 功能简介6.4 下位机程序设计第七章 硬件TWI 端口编程7.1 TWI 模块概述7.2 主控模式操作实时时钟DS13077.3 两个Mega8 间的TWI 通信第八章 BootLoader 功能应用8.1 BootLoader 功能介绍8.2 avr-libc 对BootLoader 的支持8.3 BootLoader 应用实例8.4 基于LuckyProg2004 的BootLoader 程序第九章 汇编语言支持9.1 C 代码中内联汇编程序9.2 独立的汇编语言支持9.3 C 与汇编混合编程第十章 C++语言支持附录 1 avr-gcc 选项附录 2 Intel HEX 文件格式描述

    标签: AVR GCC 单片机

    上传时间: 2014-04-03

    上传用户:ligi201200

  • 单片机系统常用软件抗干扰措施

    单片机系统常用软件抗干扰措施:可靠性设计是一项系统工程,单片机系统的可靠性必须从软件、硬件以及结构设计等方面全面考虑。硬件系统的可靠性设计是单片机系统可靠性的根本,而软件系统的可靠性设计起到抑制外来干扰的作用。软件系统的可靠性设计的主要方法有:开机自检、软件陷阱(进行程序“跑飞”检测)、设置程序运行状态标记、输出端口刷新、输入多次采样、软件“看门狗”等。通过软件系统的可靠性设计,达到最大限度地降低干扰对系统工作的影响,确保单片机及时发现因干扰导致程序出现的错误,并使系统恢复到正常工作状态或及时报警的目的。一、开机自检开机后首先对单片机系统的硬件及软件状态进行检测,一旦发现不正常,就进行相应的处理。开机自检程序通常包括对RAM、ROM、I/O口状态等的检测。1 检测RAM检查RAM读写是否正常,实际操作是向RAM单元写“00H”,读出也应为“00H”,再向其写“FFH”,读出也应为“FFH”。如果RAM单元读写出错,应给出RAM出错提示(声光或其它形式),等待处理。2 检查ROM单元的内容对ROM单元的检测主要是检查ROM单元的内容的校验和。所谓ROM的校验和是将ROM的内容逐一相加后得到一个数值,该值便称校验和。ROM单元存储的是程序、常数和表格。一旦程序编写完成,ROM中的内容就确定了,其校验和也就是唯一的。若ROM校验和出错,应给出ROM出错提示(声光或其它形式),等待处理。3 检查I/O口状态首先确定系统的I/O口在待机状态应处的状态,然后检测单片机的I/O口在待机状态下的状态是否正常(如是否有短路或开路现象等)。若不正常,应给出出错提示(声光或其它形式),等待处理。4 其它接口电路检测除了对上述单片机内部资源进行检测外,对系统中的其它接口电路,比如扩展的E2PROM、A/D转换电路等,又如数字测温仪中的555单稳测温电路,均应通过软件进行检测,确定是否有故障。只有各项检查均正常,程序方能继续执行,否则应提示出错。

    标签: 单片机系统 软件 抗干扰措施

    上传时间: 2013-11-02

    上传用户:名爵少年

  • 交通灯控制器的设计与实现

    交通灯控制器的设计与实现一、实验目的1. 了解交通灯管理的基本工作原理。2. 熟悉8253计数器/定时器、8259A中断控制器和8255A并行接口的工作方式及应用编程。3. 掌握多位LED显示的方法。 二、 实验内容与要求设计一个用于十字路口的交通灯控制器。1.基本要求: 1) 东西和南北方向各有一组红,黄,绿灯用于指挥交通,红,黄,绿的持续时间分别为25s,5s,20s。2) 当有紧急情况(如消防车)时,两个方向均为红灯亮,计时停止,当特殊情况结束后,控制器恢复原来状态,正常工作。3) 一组数码管,以倒计时方式显示两个方向允许通行或禁止通行的时间。2.提高部分:1) 实时修改交通灯的持续时间。2) 根据不同时段对主要交通方向的信号进行调整。3) 可以使用LCD显示提示信息。 三、实验报告要求 1.设计目的和内容 2.总体设计 3.硬件设计:原理图(接线图)及简要说明 4.软件设计框图及程序清单 5.设计结果和体会(包括遇到的问题及解决的方法) 四、总体设计交通灯的工作过程如下:设十字路口的1、3为南,北方向,2、4为东西方向,初始态为4个路口的红灯全亮。之后,1、3路口的绿灯亮,2、4路口的红灯亮,1、3路口方向通车,2个路口的LED数码管开始倒计时25秒。延迟20秒后,1、3路口的绿灯熄灭,而1,3路口的黄灯开始闪烁(1HZ)。闪烁5次后,1、3路口的红灯亮,同时2、4路口的绿灯亮,2、4路口方向开始通车,2个路口的LED数码管重新开始倒计时25秒。延迟20秒时间后,2、4路口的绿灯熄灭,而黄灯开始闪烁。闪烁5次后,再切换到1、3路口方向。之后,重复上述过程。当有紧急情况时,2个方向都红灯亮,倒计时停止,车辆禁止通行,当紧急情况结束后,控制器恢复以前的状态继续工作。 在设计中采用6个发光二极管来模拟2个路口的黄红绿灯,每个路口用2个数码管来显示通行或禁止剩余的时间。紧急情况用一个单脉冲发生单元申请中断来模拟,紧急情况结束后,再发一个中断来恢复以前的状态。 根据前面的介绍,本设计硬件由定时模块、发光二极管模块、数码管显示模块和紧急中断模块组成。定时模块采用硬件定时和软件定时相结合的方法,用8253定时/计数器定时100ms,再用软件计时实现所需的定时。发光二极管模块由8255控制发光二极管来实现。数码管显示模块由实验平台上的LED显示模块实现。紧急中断模块是由单脉冲发生单元和8279中断控制器组成。 程序主要是由定时子程序、发光二极管显示子程序、数码管显示子程序和中断服务程序组成。包括对8253、8255以及8259等可编程器件的编程。 五、硬件设计 本课题的设计可通过实验平台上的一些功能模块电路组成,由于各模块电路内部已经连接,用户在使用时只要设计模块间电路的连接,因此,硬件电路的设计及实现相对简单。完整系统的硬件连接如图1所示。硬件电路由定时模块、发光二极管模块、数码管显示模块和紧急中断模块组成。 定时模块是由8253的计数器0来实现定时100ms。Clk0接实验平台分频电路输出Q6,f=46875hz。GATE0接8255的PA0,由8255输出来控制计数器的起停。OUT0接8259的IRQ2,定时完成申请中断,进入中断服务程序。 发光二极管显示模块由8255输出来控制发光二极管的亮灭。8255输出为低电平时,对应的发光二极管就点亮,否则就熄灭。8255的接口电路如图2所示。交通灯的对应关系如下:L7 L6 L5 L2 L1 L0PC7 PC6 PC5 PC2 PC1 PC013红灯 13黄灯 13绿灯 24红灯 24黄灯 24绿灯  实验平台上提供一组六个LED数码管。插孔CS1用于数码管段选的输出选通,插孔CS2用于数码管位选信号的输出选通。本设计用4个数码管来倒计时。 紧急中断模块是由单脉冲发生单元和8259中断控制器,单脉冲发生单元主要用来请求中断,然后做出紧急情况处理。

    标签: 交通灯控制器

    上传时间: 2013-10-07

    上传用户:小小小熊

  • 51单片机工程师实例设计程序集-(20种常见应用整编)

    51单片机工程师实例设计程序集-(20种常见应用整编) \7290\                          ;ZLG7290例程*\7290a\                         ;ZLG7290汇编例程*\bell\                          ;蜂鸣器音乐例程*\buzz\                          ;蜂鸣器响例程*\eeprom\                        ;读EEPROM并显示例程*\ex26a_lcd\                     ;16×2LCD模块例程*\ex36a_lcm\                     ;128×64点阵LCD模块例程*\KEY_IO\                        ;直连KEY和LED例程\led_light\                     ;直连LED例程*\lin_park\   ;lin模块的原码及例程。\lin\                           ;LIN总线例程\rs232\                         ;RS232例程(包括PC端和书上了串口例程)\USB1.1\                        ;USB1.1例程(包括PC端)\RS485\                         ;RS485例程\USB2.0\                        ;USB2.0例程(有3个,包括PC端)\TCPIP\                         ;基于ETHERNET的TCPIP例程\RTC\                           ;时钟显示例程\CAN_SELF\                      ;CAN自发自收例程  外中断1\CAN\                           ;CAN例程\USBPACK 2.0\                   ;USB2.0PC例程 注意:带*程序为MON51调试程序。在MON时程序下载后停不下来,可以按一下RSE按钮复位一下。

    标签: 51单片机 工程师 设计程序

    上传时间: 2013-10-13

    上传用户:雨出惊人love

  • 基于P87C591的CAN总线系统智能节点设计

    基于P87 C591的CAN总线系统智能节点设计Design of CAN System Intelligent Node Based on P87C591 给出了基于带CAN控制器的单片8位微控制器P87C591的智能节点的硬件电路及软件结构,详细介绍了设计中的难点及实现过程中应注意的问题。关键词:CAN总线;智能节点 Abstract:A h ardc ircuita nds oftw arec onfigurationo fth ei ntelligentnode based on a microcontroller with CAN controller P87C591 arepresented.E speciallyt hec ruxi nd esigninga ndt hep roblemst hatshould be paid attention in realizing are discussed in details.Keyw ords:C AN;in telligentn ode CA N 总线 是德国Bosch从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。由于CAN总线具有较强的纠错能力,支持差分收发,因而适合高噪声环境。并具有较远的传输距离,适用于许多领域的分布式测控系统。目前已在工业自动化、建筑物环境控制、医疗设备等许多领域得到广泛的应用。CAN已成为国际标准化组织IS011898标准。

    标签: P87C591 CAN 总线系统 智能节点

    上传时间: 2013-10-30

    上传用户:xymbian

  • PCB可测性设计布线规则之建议―从源头改善可测率

    P C B 可测性设计布线规则之建议― ― 从源头改善可测率PCB 设计除需考虑功能性与安全性等要求外,亦需考虑可生产与可测试。这里提供可测性设计建议供设计布线工程师参考。1. 每一个铜箔电路支点,至少需要一个可测试点。如无对应的测试点,将可导致与之相关的开短路不可检出,并且与之相连的零件会因无测试点而不可测。2. 双面治具会增加制作成本,且上针板的测试针定位准确度差。所以Layout 时应通过Via Hole 尽可能将测试点放置于同一面。这样就只要做单面治具即可。3. 测试选点优先级:A.测垫(Test Pad) B.通孔(Through Hole) C.零件脚(Component Lead) D.贯穿孔(Via Hole)(未Mask)。而对于零件脚,应以AI 零件脚及其它较细较短脚为优先,较粗或较长的引脚接触性误判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板弯变形,影响测点精准度,制作治具需特殊处理。5. 避免将测点置于SMT 之PAD 上,因SMT 零件会偏移,故不可靠,且易伤及零件。6. 避免使用过长零件脚(>170mil(4.3mm))或过大的孔(直径>1.5mm)为测点。7. 对于电池(Battery)最好预留Jumper,在ICT 测试时能有效隔离电池的影响。8. 定位孔要求:(a) 定位孔(Tooling Hole)直径最好为125mil(3.175mm)及其以上。(b) 每一片PCB 须有2 个定位孔和一个防呆孔(也可说成定位孔,用以预防将PCB反放而导致机器压破板),且孔内不能沾锡。(c) 选择以对角线,距离最远之2 孔为定位孔。(d) 各定位孔(含防呆孔)不应设计成中心对称,即PCB 旋转180 度角后仍能放入PCB,这样,作业员易于反放而致机器压破板)9. 测试点要求:(e) 两测点或测点与预钻孔之中心距不得小于50mil(1.27mm),否则有一测点无法植针。以大于100mil(2.54mm)为佳,其次是75mil(1.905mm)。(f) 测点应离其附近零件(位于同一面者)至少100mil,如为高于3mm 零件,则应至少间距120mil,方便治具制作。(g) 测点应平均分布于PCB 表面,避免局部密度过高,影响治具测试时测试针压力平衡。(h) 测点直径最好能不小于35mil(0.9mm),如在上针板,则最好不小于40mil(1.00mm),圆形、正方形均可。小于0.030”(30mil)之测点需额外加工,以导正目标。(i) 测点的Pad 及Via 不应有防焊漆(Solder Mask)。(j) 测点应离板边或折边至少100mil。(k) 锡点被实践证实是最好的测试探针接触点。因为锡的氧化物较轻且容易刺穿。以锡点作测试点,因接触不良导致误判的机会极少且可延长探针使用寿命。锡点尤其以PCB 光板制作时的喷锡点最佳。PCB 裸铜测点,高温后已氧化,且其硬度高,所以探针接触电阻变化而致测试误判率很高。如果裸铜测点在SMT 时加上锡膏再经回流焊固化为锡点,虽可大幅改善,但因助焊剂或吃锡不完全的缘故,仍会出现较多的接触误判。

    标签: PCB 可测性设计 布线规则

    上传时间: 2014-01-14

    上传用户:cylnpy

  • 微型计算机课程设计论文—通用微机发声程序的汇编设计

    微型计算机课程设计论文—通用微机发声程序的汇编设计 本文讲述了在微型计算机中利用可编程时间间隔定时器的通用发声程序设计,重点讲述了程序的发声原理,节拍的产生,按节拍改变的动画程序原理,并以设计一个简单的乐曲评分程序为引子,分析程序设计的细节。关键字:微机 8253 通用发声程序 动画技术 直接写屏 1. 可编程时间间隔定时器8253在通用个人计算机中,有一个可编程时间间隔定时器8253,它能够根据程序提供的计数值和工作方式,产生各种形状和各种频率的计数/定时脉冲,提供给系统各个部件使用。本设计是利用计算机控制发声的原理,编写演奏乐曲的程序。    在8253/54定时器内部有3个独立工作的计数器:计数器0,计数器1和计数器2,每个计数器都分配有一个断口地址,分别为40H,41H和42H.8253/54内部还有一个公用的控制寄存器,端地址为43H.端口地址输入到8253/54的CS,AL,A0端,分别对3个计数器和控制器寻址.     对8353/54编程时,先要设定控制字,以选择计数器,确定工作方式和计数值的格式.每计数器由三个引脚与外部联系,见教材第320页图9-1.CLK为时钟输入端,GATE为门控信号输入端,OUT为计数/定时信号输入端.每个计数器中包含一个16位计数寄存器,这个计数器时以倒计数的方式计数的,也就是说,从计数初值逐次减1,直到减为0为止.     8253/54的三个计数器是分别编程的,在对任一个计数器编程时,必须首先讲控制字节写入控制寄存器.控制字的作用是告诉8253/54选择哪个计数器工作,要求输出什么样的脉冲波形.另外,对8253/54的初始化工作还包括,向选定的计数器输入一个计数初值,因为这个计数值可以是8为的,也可以是16为的,而8253/5的数据总线是8位的,所以要用两条输出指令来写入初值.下面给出8253/54初始化程序段的一个例子,将计数器2设定为方式3,(关于计数器的工作方式参阅教材第325—330页)计数初值为65536.    MOV   AL,10110110B ;选择计数器2,按方式3工作,计数值是二进制格式    OUT   43H,AL      ; j将控制字送入控制寄存器    MOV   AL,0        ;计数初值为0    OUT   42H,AL      ;将计数初值的低字节送入计数器2    OUT   42H,AL      ;将计数初值的高字节送入计数器2    在IBM PC中8253/54的三个时钟端CLK0,CLK1和CLK2的输入频率都是1.1931817MHZ. PC机上的大多数I/O都是由主板上的8255(或8255A)可编程序外围接口芯片(PPI)管理的.关于8255A的结构和工作原理及应用举例参阅教材第340—373页.教材第364页的”PC/XT机中的扬声器接口电路”一节介绍了扬声器的驱动原理,并给出了通用发声程序.本设计正是基于这个原理,通过编程,控制加到扬声器上的信号的频率,奏出乐曲的.2.发声程序的设计下面是能产生频率为f的通用发声程序:MOV      AL, 10110110B   ;8253控制字:通道2,先写低字节,后写高字节        ;方式3,二进制计数OUT      43H, AL                  ;写入控制字MOV      DX, 0012H               ;被除数高位MOV      AX, 35DEH              ;被除数低位 DIV      ID      ;求计数初值n,结果在AX中OUT      42H, AL     ;送出低8位MOV      AL, AHOUT      42H,AL     ;送出高8位IN      AL, 61H     ;读入8255A端口B的内容MOV      AH, AL                  ;保护B口的原状态OR  AL, 03H     ;使B口后两位置1,其余位保留OUT 61H,AL     ;接通扬声器,使它发声

    标签: 微型计算机 发声程序 论文 微机

    上传时间: 2013-10-17

    上传用户:sunjet