1.1 设计总体要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。(3)能正确设计电路,画出线路图,分析电路原理。4)按时参加课程设计指导,定期汇报课程设计进展情况。(5)广泛收集相关技术资料。(6)独立思考,刻苦钻研,严禁抄袭(7)按时完成课程设计任务,认真、正确地书写课程设计报告。8)培养实事求是、严谨的工作态度和认真的工作作风。1.2 设计课题任务及要求设计一个IGBT升压斩波电路设计(纯电阻负载),要求1、输入直流电压:Ud-50V;2、输出功率:300W;3、开关频率:5KHz;5、输出电压脉率:小于10%.1.3 设计方案与总体框图斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。其中,主电路模块主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压U的大小。控制与驱动电路模块:用直接产生PWM的专用芯片SG3525产生PWM信号送给驱动电路,经驱动电路来控制IGBT的开通与关断。电路模块:驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动1GBT的开通与关断。驱动电路模块:控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
上传时间: 2022-06-19
上传用户:
引言我们在选择和设计IGBT驱动器时经常会碰到一些问题和不确定因素。部分原因是厂家对IGBT描述的不够充分;另一方面是由于IGBT手册中所给的输入结电容Ciss值与在应用中的实际的输入结电容值相差甚远。依据手册中的Ciss值作设计,令许多开发人员走入歧途。下面给出了不同功率等级的驱动电路选择和设计的正确计算的步骤。1 确定IGBT门极电荷以及门极电容对于设计一个驱动器来讲,最重要的参数是门极电荷,在很多情况下,IGBT数据手册中这个参数没有给出,另外,门极电压在上升过程中的充电过程也未被描述。无论如何,门极的充电过程相对而言能够简单地通过测量得到。因而要驱动一个IGBT,我们最好使用一个专用的驱动器。除此之外,在设计中至少我们知道在应用中所需的门极电压(例如±15V)首先,在负载端没有输出电压的情况下,我们可以作如下计算。门极电荷可以利用公式计算
上传时间: 2022-06-21
上传用户:
本论文所涉及的电源管理方案来源于与台湾某上市公司的横向合作项目,在电源管理产品朝着低功耗、高效率和智能化方向发展的形势下,论文采用了一种开关电源与低压降(LDO)线性电压调节器结合应用的集成方案,即将LDO作为升压型电源管理芯片的内部供电模块。按照方案的要求,本文设计了一种含缓冲级的低压降线性电压调节器。设计采用0.6um 30V BCD工艺,实现LDO的输入电压范围为6-13V:满足在-25-85℃的工作温度范围内,输出电压为5V:在典型负载电流(12.5mA)下,LDO的压降电压为120mv.文章首先阐述了整个方案的工作原理,给出LDO设计的指标要求;其次,依据系统方案的指标要求和制造工艺约束,实现包含误差放大器、基准源和保护电路等子模块在内的电压调整器:此外,文章还着重探讨了“如何利用放大器驱动100pF数量级的大电容负载”的问题:最后,给出整个模块总体电路的仿真验证结果。LDO的架构分析和设计以及基准源的设计是本文的核心内容。在LDO架构设计部分,文章基于对三种不同LDO拓扑的分析,选择并实现了含缓冲器级的LDO.设计中通过改进反馈网络,采用反馈电容,实现对LDO的环路补偿。同时,为提高误差放大器驱动功率管的能力、适应LDO低功耗发展的需求,文章探讨了如何使用放大器驱动大负载电容的问题。基于密勒定理和根轨迹原理,本文通过研究密勒电容的作用,采用MPC(Miller-Path-Compensation)结构,实践了两级放大器驱动大负载电容的方案,并把MPC补偿技术推广到三级放大器的设计中。
上传时间: 2022-06-22
上传用户:
详细的分析了采用STM32控制L6470步进电机驱动器的过程
上传时间: 2022-06-23
上传用户:1208020161
开关电源具有体积小、效率高等特点,广泛应用在工业、商业、民用、军事和航空航天等领域。随着计算机、通讯等信息产业的飞速发展,便携式电子产品的广泛应用,我国开关电源市场的不断增长,开关电源控制芯片的研究已经成为国内功率电子学研究的热点。本论文主要研究了升压式PWM开关电源控制芯片的设计。开关电源变换器是一个由主回路和控制回路构成的闭环系统,所以本文首先分析了变换器CCM和DCM两种模式下主回路的稳态和动态特性,接着分析了整个闭环系统的控制模式和稳定性。在理论分析的基础上,研究了开关电源集成电路的主要模块,包括基准电压,振荡器,运算放大器,PWM比较器,并完成了电路设计。在系统级和电路级的分析和设计的基础上,利用Hspice对主要模块和整个系统进行仿真。仿真结果表明,本论文设计的升压式PWM开关电源控制芯片满足高效率、高精度、低工作电压等设计要求,适合应用在单电池供电的便携式电子产品中。本论文设计的芯片采用0.5umN阱1P2M的CMOS工艺制造。
上传时间: 2022-06-25
上传用户:
开关升压型锂电池充电管理芯片FLD5302/3概述 为开关型两节或三节锂离子/锂 聚合物电池充电管理芯片,非常适合于便携 式设备的充电管理应用。 集电压和电 流调节器、预充、充电状态指示和充电截止 适配器自适应等功能于一体,采用 SOP-8 封装。 对电池充电分为三个阶段:预 充( Pre-charge )、恒流(CC/Constant Current)、恒压(CV/Constant Voltage)过程。 集成过压及过流保护,确保电芯的 安全。
上传时间: 2022-06-25
上传用户:
三洋伺服驱动器使用手册,详细介绍啦伺服驱动器的各项功能
标签: 伺服驱动器
上传时间: 2022-06-26
上传用户:
超小封装mos管驱动器
上传时间: 2022-06-29
上传用户:jason_vip1
本设计为42DRV8825基于stm32 控制, DRV8825 来实现驱动步进电机,正转 ,反转,32细分DRV8825是具有片上1/32 微步进分度器的2.5A 双极步进电机驱动器。该DRV8825驱动器打造color: rgb(5, 163, 94); text-decoration-line: none; font-family: 微软雅黑, 42步进电机驱动板外部有检测口,检测电机是否到位
上传时间: 2022-07-01
上传用户:
是一款固定频率,电流模式升压变换器,高达1.2MHz的工作频率使得外围电感电容可以选择更小的规格。内置软启动功能减小了启动冲击电流。轻载时自动切换至PFM模式。LY1061包含了输入欠压锁定,电流限制以及过热保护功能。小尺寸的封装给PCB省下更多的空间。 ● 集成0.8欧姆的高压功率MOSFET● 内部4A的开关电流限制● 2V-24V的输入电压,VFB:0.6V● 1.2MHz 固定工作频率● 输出电流2A ● 内部补偿功能 ● 输出电压高达28V● 轻负载条件下,能进行自动脉冲调制。LY1061是一款固定频率,SOT23-6封装的电流模式升压变换器,高达1.2MHz的工作频率使得外围电感电容可以选择更小● 效率高达97% 应用: 电池供电设备/ 机顶盒/ LCD偏置电源/ 无线产品及DSL调制调解器/ PCI网卡或插槽供电 DC-DC / AC-DC 电压检测 降压 DC-DC 同步降压 ESD电压保护
标签: FTB628
上传时间: 2022-07-03
上传用户: