共轭梯度法为求解线性方程组而提出。后来,人们把这种方法用于求解无约束最优化问题, 使之成为一种重要的最优化方法。 共轭梯度法的基本思想是把共轭性与最速下降方法相结合, 利用已知点处的梯度构造一组共 轭方向, 并沿这组方向进行搜索, 求出目标函数的极小点。 根据共轭方向的基本性质, 这种 方法具有二次终止性。 在各种优化算法中, 共轭梯度法是非常重要的一种。 其优点是所需存 储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 共轭方向 无约束最优化方法的核心问题是选择搜索方向 . 在本次实验中 , 我们运用基于共轭方向的一种 算法 — 共轭梯度法 三.算法流程图: 四.实验结果: (1). 实验函数 f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20*x3+ 1/3*(10*3.14159-3))^2; 给定初始点 (0,0,0) , k=1 ,最 大迭代次数 n d 确定搜索方向 进 退 法 确 定 搜 索 区 间 分割法确定最 优步长
上传时间: 2016-05-08
上传用户:saren11
该程序代码为共轭梯度法matlab源代码,其特点有:简单易读,适于做优化
标签: 梯度,
上传时间: 2016-12-22
上传用户:杨一一一
共轭梯度法是无约束优化问题的典型算法,通过构造一系列相互共轭的方向向量,寻找目标函数的最优解
上传时间: 2017-02-14
上传用户:chenrong1236
共轭梯度法在计算工程中求解线性方程组和无约束优化问题中有广泛的应用
上传时间: 2019-06-16
上传用户:Shenx_u
计算实序列傅立叶变换,利用其共轭对称性计算速度快,存储量小。
上传时间: 2016-01-06
上传用户:思琦琦
陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示:ΣΣ==−−−=MiNiiiinybinxany01)()()( (1)式中: x(n)和y(n)分别为输人和输出信号序列;和为滤波器系数。 iaib对式(1)两边进行z变换,得到数字滤波器的传递函数为: ΠΠΣΣ===−=−−−==NiiMiiNiiiMiiipzzzzbzazH1100)()()( (2)式中:和分别为传递函数的零点和极点。 izip由传递函数的零点和极点可以大致绘出频率响应图。在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。考虑一种特殊情况,若零点在第1象限单位圆上,极点在单位圆内靠近零点的径向上。为了防止滤波器系数出现复数,必须在z平面第4象限对称位置配置相应的共轭零点、共轭极点。 izip∗iz∗ip这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo处出现凹陷。而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为: ))1()()1(())(()(2121zzzzzzzzzHμμ−−−−−−= (3)式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。一个例子:设有一个输入,它
上传时间: 2013-10-18
上传用户:uuuuuuu
数值线性代数的Matlab应用程序包 共13个程序函数,每个程序函数有相应的例子函数一一对应,以*Example.m命名 程序名称 用途 Method 方法 GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特 MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特 householder.m QR因子分解 Householder 豪斯霍尔德QR因子分解 ZXEC.m 最小二乘拟合 polynomial interpolant 最小二乘插值多项式 NCLU.m LU因子分解 Gaussian elimination 不选主元素的高斯消元 PALU.m LU因子分解 partial pivoting Gaussian elimination 部分选主元的高斯消元 cholesky.m 楚因子分解 Cholesky Factorization 楚列斯基因子分解 PwItrt.m 求最大特征值 Power Iteration 幂迭代 Jacobi.m 求特征值 Jacobi iteration 按标准行方式次序的雅可比算法 Anld.m 求上Hessenberg Arnoldi Iteration 阿诺尔迪迭代 zuisu.m 解线性方程组 Steepest descent 最速下降法 CG.m 解线性方程组 Gradients 共轭梯度 BCG.m 解线性方程组 Biconjugate Gradients 双共轭梯度
上传时间: 2016-05-17
上传用户:小鹏
共梯度算法程序代码.数学上,共梯度法实求解特定线性系统的数值解的方法,其中那些矩阵为对称和正定。共轭梯度法是一个迭代方法,所以它适用于稀疏矩阵系统,因为这些系统对于象乔莱斯基分解这样的直接方法太大了。这种系统在数值求解偏微分方程时相当常见。 共梯度法也可以用于求解无约束优化问题。
上传时间: 2016-09-05
上传用户:exxxds
全主元高斯约当消去法 2.LU分解法 3.追赶法 4.五对角线性方程组解法 5.线性方程组解的迭代改善 6.范德蒙方程组解法 7.托伯利兹方程组解法 8.奇异值分解 9.线性方程组的共轭梯度法 10.对称方程组的乔列斯基分解法 11.矩阵的QR分解 12.松弛迭代法
上传时间: 2014-11-22
上传用户:wff
vc++实现线性方程组求解 1全选主元高斯消元法 2全选主元高斯-约当消元法 3三对角方程组的追赶法 4一般带型方程组求解 5对称方程组的分解法 6对称正定方程组的平方根法 7大型稀疏方程组全选主元高斯-约当法 8托伯利兹方程组的列文逊法 9高斯-赛德尔迭代法 10对称正定方程组的共轭梯度法 11线性最小二乘问题的豪斯荷尔德变换法 12线性最小二乘问题的广义逆法 13病态方程组求解 最后注意,在VC++ 6.0中设置好路径,特别是include目录(文件夹)的路径,否则在编译时会出现找不到头文 件的错误,使编译无法正常进行。
上传时间: 2014-01-17
上传用户:Zxcvbnm