RA8889ML3N是一款低功耗及显示功能强大的彩色 TFT 控制器,内部具有内存 SDRAM,为了可以快速为显示内存进行屏幕更新, RA8889 支持 MCU 端 8080/6800 8/16-bit 异步并列接口与 3/4 线 SPI 及 IIC串行接口,提供多段的显示内存缓冲区段,并提供画中画 (PIP)、透明度控制与显示旋转镜像及内建 JPEG & AVI 视频解码功能,支持AVI显示的自动播放、暂停和停止功能。*RA8889ML3N支持 16/18/24-bit CMOS 接口屏幕 *RA8889ML3N支持以下分辨率,最大可支持1366X800像素:
上传时间: 2021-12-08
上传用户:jason_vip1
索尼最小CMOS图像传感器IMX415 日本东京索尼公司今年发布一款新型CMOS影像传感器:IMX415,1/2.8 英寸堆叠式4K CMOS影像传感器,刷新全球同类产品的小尺寸纪录; 针对日益扩大的智慧城市相关的市场需求,索尼特别开发了这款新型的应用于安防摄像机的传感器,以满足安防摄像机在防盗、灾难警报、交通监测系统或商业综合体等多种监控应用领域的快速增长需求。目前,在各种场合安装安防摄像机的需求正日益增多,而对于可以安装在任何地方、具有更高图像识别和检测性能的紧凑型安防摄像机的需求也比以往任何时候都要大。未来,用于异常检测和人工智能行为分析的图像识别摄像机的需求也将显著增长。 为了满足这一需求,索尼推出了一系列紧凑型4K CMOS影像传感器,能够同时提供卓越的图像识别和检测性能,以及出色的低光性能表现——这是传统技术难以实现的。索尼丰富的传感器产品线,让人们在多种场景下都能获取高质量图像,从而扩大了安防摄像机的应用范围。IMX415堆叠式CMOS影像传感器采用了索尼独有的高灵敏度,低噪点技术,将像素尺寸缩至1.45平方微米,比前代产品*3缩小约80%,尽管该传感器只有1/2.8英寸,其低光性能却是前代产品的1.5倍*3。缔造出破纪录的 1/2.8英寸堆叠式4K CMOS影像传感器,并具备卓越的低光性能。该传感器采用低噪点电路堆叠式结构,即使在黑暗环境下也可以捕捉到清晰的图像。由于它尺寸小,可适用于多种场景,在安防摄像机应用方面需求量很高。
上传时间: 2021-12-13
上传用户:
基于IMX219的摄像头模组(不带驱动板),800万像素,160度视场角,兼容 树莓派V2版本摄像头 板载接口。如果你正在使用树莓派摄像头V2版,并且对它的模组视场角不满意,那你可以考虑代替
标签: 摄像头
上传时间: 2022-04-02
上传用户:默默
TFT-LCD(Thin Film Transistor Liquid Crystal Display)即薄膜晶体管液晶显示器,是微电子技术与液晶显示器技术巧妙结合的的一种技术。CRT显示器的工作原理是通电后灯丝发热,阴极被激发后发射出电子流,电子流受到高电压的金属层的加速,经过透镜聚焦形成极细的电子束打在荧光屏上,使荧光粉发光显示图像。LCD显示器需要来自背后的光源,当光束通过这层液晶时,液晶会呈不规则扭转形状(形状由TFT上的信号与电压改变实现),所以液晶更像是一个个闸门,选择光线穿透与否,这样就可以在屏幕上看到深浅不一,错落有致的图像。目前主流的LCD显示器都是TFT-LCD,是由原有液晶技术发展而来。TFT液晶为每个像素都设有一个半导体开关,以此做到完全的单独控制一个像素点,液晶材料被夹在TFT阵列和彩色滤光片之间,通过改变刺激液晶的电压值就可以控制最后出现的光线强度和色彩,
上传时间: 2022-04-09
上传用户:
此方案可以将200W像素(即1920x1080P 60Hz)的AHD信号转换为HDMI信号或者VGA信号以上转出的两种信号均支持到1920x1080P 60Hz,也可以转换为CVBS信号(只支持PAL和NTSC制)方案构架为NVP6124B+CV2880+CV8788+MCU
上传时间: 2022-05-25
上传用户:ttalli
在各种显示技术中,以液晶显示器(LiquidCrystalDisplay)为代表的平板显示器发展最快、应用最广。而在高分辨率的液晶显示器中,为了提高显示画面的质量。人们在每个显示像素上设计了一个非线性的有源薄膜晶体管(TFT―ThinFilmTransistor)来对每一个液晶像素进行独立驱动。因此,这种液晶显示器被称为TFT-LCD。 本文利用苏州友达光电有限公司提供的TFT液晶模块和背光源逆变器,设计并制作了由可编程门阵列(FPGA―FieldProgrammableGateArray)和单片机控制的显示系统。为此,首先深入分析了TFT-LCD的驱动原理,针对苏州友达光电有限公司提供的低压差分信号(LVDS―LowVoltageDifferentialSignaling)接口方式的液晶模块,又进一步分析了LVDS接口信号原理。 在深入分析了液晶显示器驱动原理和LVDS接口特性的基础上,基于FPGA设计了控制显示器行/场同步信号和显示像素信号输出LVDS接口的驱动电路,并采用高性价比的FPGA芯片EP1C3T144和LVDS发送器芯片DS90C387制作和调试了相应的电路。 同时,苏州友达光电有限公司为液晶显示模块的CCFL(ColdCathodeFluorescentLamp)背光源提供一块逆变器。针对该逆变器,本文设计了基于单片机、D/A转换器和三端可调稳压电源模块的输出可调的直流稳压电源来控制逆变器的工作,从而实现了对背光源亮暗的调节。该电源电路能将输出的电压值的大小用数码管实时的显示出来。 经过实际调试运行,本文设计的LVDS接口的TFT液晶显示模块驱动电路,和单片机控制的直流稳压可调电源,能够有效驱动TFT-LCD,并控制其像素的显示。
上传时间: 2022-05-31
上传用户:
摘要:随着客户要求手机摄像头像素越来越高,同时要求高的传输速度,传统的并口传输越来越受到挑战。提高并口传输的输出时钟是一个办法,但会导致系统的EMC设计变得越来困难;增加传输线手机摄像头MIPI技术介绍随着客户要求手机摄像头像素越来越高,同时要求高的传输速度,传统的并口传输越来越受到挑战。提高并口传输的输出时钟是一个办法,但会导致系统的EMC设计变得越来困难;增加传输线的位数是,但是这又不符合小型化的趋势。采用MIPI接口的模组,相较于并口具有速度快,传输数据量大,功耗低,抗干扰好的优点,越来越受到客户的青睐,并在迅速增长。例如一款同时具备MIPI和并口传输的8M的模组,8位并口传输时,需要至少11根的传输线,高达96M的输出时钟,才能达到12FPS的全像素输出;而采用MIPI接口仅需要2个通道6根传输线就可以达到在全像素下12FPS的帧率,且消耗电流会比并口传输低大概20MA。由于MIPI是采用差分信号传输的,所以在设计上需要按照差分设计的一般规则进行严格的设计,关键是需要实现差分阻抗的匹配,MIPI协议规定传输线差分阻抗值为80-125欧姆。上图是个典型的理想差分设计状态,为了保证差分阻抗,线宽和线距应该根据软件仿真进行仔细选择;为了发挥差分线的优势,差分线对内部应该紧密耦合,走线的形状需要对称,甚至过孔的位置都需要对称摆放;差分线需要等长,以免传输延迟造成误码:另外需要注意一点,为了实现紧密的耦合,差分对中间不要走地线,PIN的定义上也最好避免把接地焊盘放置在差分对之间(指的是物理上2个相邻的差分线)。
上传时间: 2022-06-02
上传用户:
CCD 和CMOS 的区别一、CCD 和CMOS 在制造上的主要区别是CCD 是集成在半导体单晶材料上,而CMOS 是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD 只有少数几个厂商例如索尼、松下等掌握这种技术。而且CCD 制造工艺较复杂,采用CCD 的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD 和CMOS 的实际效果的差距已经减小了不少。而且CMOS 的制造成本和功耗都要低于CCD 不少,所以很多摄像头生产厂商采用的CMOS 感光元件。成像方面:在相同像素下CCD 的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS 的产品往往通透性一般,对实物的色彩还原能力偏弱, 曝光也都不太好, 由于自身物理特性的原因, CMOS 的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性, 因此在摄像头领域还是得到了广泛的应用。
上传时间: 2022-06-23
上传用户:
最近入手了Pandaboard的高清摄像头子板一块,顺便学习了MIPICSI2接口,给各位网友分享一下。这个高清摄像头采用ov5640芯片,500万像素,支持自动聚焦,这也是手机和平板里面用得比较多的一种cmos传感芯片。OV5640同时支持并向和串行数据传输,当然串行传输(也就是MIPI方式)速度更快,能够支持更高的分辨率,一般手机里300万或者500万像素的摄像头一般都是MIPI接口。不妨再多提一下MIPI标准,MIPI是做移动应用处理器的几家巨头公司成立的联盟,旨在定义移动应用处理器的接口标准,其全称为“Mobile Industry Processor Interface”。现在用的比较多是MIPI框架中的摄像头标准和显示标准,即MIPICSI和MIPI DSI。CSI代表Camera Serial Interface,而DSI代表Display Serial Interface。现在CSI已经升级到CSI2.0版本,即MIPICSI2接口。本文所提到的Pandaboard 高清摄像头使用的就是MIPICSI2接口。先贴一个Pandaboard安装好摄像头子板的图片:
上传时间: 2022-06-24
上传用户:jason_vip1
1引言有要发光二极管(OLED)具有低驱动电压、宽温工作、主动发光、响应速度快和视角宽等优点],其作为全彩显示器件,与LCD相比,具有更简单的工艺和更低的成本。近年,单色和局域色的OLED显示屏已有较多报道~1,并推出了全彩OLED显示屏~9]。本文研制了尺寸为1.9、分辨率为128(×3)×160的全彩OLED屏。在目前报道的同等或以下尺寸的采用无源矩阵(PM)驱动的全彩OLED屏中,该屏的分辨率处于较高水平。2全彩OLED屏2.1全彩技术的实现图1是5种实现全彩OLED显示屏技术的示意图。本文采用(a)所示的平面结构式,每个全彩像素包括红、绿和蓝3个子像素,利用空间混色实现彩色。这种技术的难点是在制作全彩OLED时,需要将红、绿和蓝OLED的发光层(EML)材料分隔开01。屏的最高分辨率不仅受限于机械掩模制作的公差,还受限于在器件制作工艺过程中机械掩模与ITO基板玻璃的对准误差。2.2P-OLED屏的驱动技术OLFD属于电流型器件,其发光亮度与驱动电流成正比,故OLED均采用恒流源驱动。由于OLED自身较高的寄生电容(20~30pF/pixel)和ITO电极引线的电阻(几~几109/口形成的电压降,对恒流源的性能提出了较高的要求,例如可提供高达~30V的电压。为了实现多灰度显示,电流必须可程控。lare公司为了精确控制每个OLED子像素的发光亮度,提出了预充电方案]。根据有无开关和驱动薄膜晶体管的存在,可将矩阵式OLED的驱动可分为P10l和有源矩阵AM112种。PM驱动的显示器件由于制作工艺比AM要简单得多,且成本低廉,故在小尺寸的显示器件上得到了广泛应用。PM驱动电路如图2所示。
标签: oled
上传时间: 2022-06-24
上传用户: