直线电动机直接驱动运动设备,省略了机械转换机构,完全消除机械传动元件的速度和加速度的物理极限,具有长行程、低惯量、高精度、快响应和高速度等特征,是先进加工中心的标志。90年代中期以后,直线驱动技术在超精密定位领域中得到了广泛的应用,吸引了越来越多的研究机构和人员投入到这一领域中来。 永磁直线同步电机与普通的直线异步电机相比,具有效率高、输出力矩大、体积小、易于控制等优点,极大地提高了进给系统的快速响应性和运动精度,成为新一代超精密机床中最具有代表的技术。永磁直线同步电机伺服控制系统将是当前和今后直线电机发展应用的一个方向。 本文以直线电机理论为依据,以现有的实验设备及新的实验方法为基础,设计了永磁直线同步电动机控制系统,分析了永磁直线同步电机控制系统中存在的难点,并对直线电动机控制系统的控制性能进行了初步的实验研究。 首先,介绍了永磁直线同步电机的结构、工作原理、相关控制策略,对直线电机控制难点进行了探讨。在此基础上,设计了永磁直线同步电机的控制系统的总体方案。 然后针对永磁直线同步电机控制系统的主要难点,分为位置检测技术,硬件系统设计和软件系统设计三个方面对控制系统进行分析。根据永磁直线同步电机的特点,提出一种简易的初始位置检测方法,并设计了检测电路。该方法基于线性霍尔元件,基本上不增加控制系统成本,安装简便,效果良好。在普通的三相逆变电路的直流侧添加DC/DC电力电子电路。这样的做的好处是根据系统需求输出直流电压,减少谐波。由于传统的基于前后台工作机制的电机控制软件存在响应不及时、不稳定等弊病,提出了基于嵌入式实时操作系统机制上编写电机控制软件。 最后基于样机和控制器做了相应试验,分析了试验结果,并提出了存在的问题和下一步的工作展望。
上传时间: 2013-06-20
上传用户:siguazgb
本课题的研究工作主要围绕机床用永磁交流伺服电动机设计展开,所做的主要工作包括以下几个部分: 首先,钕铁硼永磁材料导电率较高、耐热性能较差,当电机气隙磁场谐波含量较大时,永磁体中就会感应出涡流形成涡流损耗导致永磁体发热。因此,有必要对转子永磁体内的涡流进行计算和分析。本文分析了永磁同步电动机转子永磁体内涡流产生的原因,建立涡流的数学模型并推导出永磁体涡流损耗的计算公式。用ANSOFT有限元软件建立电动机的物理模型进行电磁场求解,结合路的计算公式算出永磁体的涡流损耗。 其次,运行平稳性是伺服电动机的一项重要的性能指标,而转矩波动的大小直接影响运行平稳性。本文分析了机床用永磁交流伺服电动机转矩波动产生的原因,运用转矩波动计算公式结合ANSOFT有限元软件,计算比较相同功率、相同极数不同槽数时,电动机的转矩波动情况。通过比较计算出的转矩波动百分比的大小,选择所设计电动机的极槽配合,以提高机床用永磁交流伺服电动机的运行性能。 最后,完成机床用永磁交流伺服电动机基本结构尺寸以及电磁参数的选取,利用有限元软件,分析计算气隙长度变化对失步转矩倍数和永磁体用量的影响,以及永磁体宽度对气隙磁密波形的影响,以此合理选择气隙长度和永磁体的宽度,使电动机的性能更优良。在上述研究的基础上,本文设计了一台0.9kW,8极36槽的机床用永磁交流伺服电动机样机,并对其性能进行了测试,测试结果表明,电机的性能指标达到了预期的要求,证明了电机设计过程理论分析计算的正确性。
上传时间: 2013-06-13
上传用户:脚趾头
伺服电机原理与应用 伺服电机原理与应用.pdf
标签: 伺服电机
上传时间: 2013-07-02
上传用户:894898248
高速、高精度已经成为伺服驱动系统的发展趋势,而位置检测环节是决定伺服系统高速、高精度性能的关键环节之一。光电编码器作为伺服驱动系统中常用的检测装置,根据结构和原理的不同分为增量式和绝对式。本文从原理上对增量式光电编码器和绝对式光电编码器做了深入的分析,通过对比它们的特性,得出了绝对式光电编码器更适合高速、高精度伺服驱动系统的结论。 绝对式光电编码器精度高、位数多的特点决定其通信方式只能采取串行传输方式,且由相应的通信协议控制信息的传输。本文首先针对编码器主要生产厂商日本多摩川公司的绝对式光电编码器,深入研究了通信协议相关的硬件电路、数据帧格式、时序等。随后介绍了新兴的电子器件FPGA及其开发语言硬件描述语言Verilog HDL,并对基于FPGA的绝对式编码器通信接口电路做了可行性的分析。在此基础上,采用自顶向下的设计方法,将整个接口电路划分成发送模块、接收模块、序列控制模块等多个模块,各个模块采用Verilog语言进行描述设计编码器接口电路。最终的设计在相关硬件电路上实现。最后,通过在TMS320F2812伺服控制平台上编写的硬件驱动程序验证了整个设计的各项功能,达到了设计的要求。
上传时间: 2013-07-11
上传用户:snowkiss2014
在机器人学的研究领域中,如何有效地提高机器人控制系统的控制性能始终是研究学者十分关注的一个重要内容。在分析了工业机器人的发展历程和机器人控制系统的研究现状后,本论文的主要目标是针对四关节实验室机器人特有的机械结构和数学模型,建立一个新型全数字的基于DSP和FPGA的机器人位置伺服控制系统的软、硬件平台,实现对四关节实验室机器人的精确控制。 本论文从实际情况出发,首先分析了所研究的四关节实验室机器人的本体结构,并对其抽象简化得到了它的运动学数学模型。在明确了实现机器人精确位置伺服控制的控制原理后,我们对机器人控制系统的诸多可行性方案进行了充分论证,并最终决定采用了三级CPU控制的控制体系结构:第一级CPU为上位计算机,它实现对机器人的系统管理、协调控制以及完成机器人实时轨迹规划等控制算法的运算;第二级CPU为高性能的DSP处理器,它辅之以具有高速并行处理能力的FPGA芯片,实现了对机器人多个关节的高速并行驱动;第三级CPU为交流伺服驱动处理器,它实现了机器人关节伺服电机的精确三闭环误差驱动控制,以及电机的故障诊断和自动保护等功能。此外,我们采用比普通UART速度快得多的USB来实现上位计算机.与下位控制器之间的数据通信,这样既保证了两者之间连接方便,又有效的提高了控制系统的通信速度和可靠性。 机器人系统的软件设计包括两个部分:一是采用VC++实现的上位监控软件系统,它主要负责机器人实时轨迹规划等控制算法的运算,同时完成用户与机器人系统之间的信息交互;二是采用C语言实现的下位DSP控制程序,它主要负责接收上位监控系统或者下位控制箱发送的控制信号,实现对机器人的实时驱动,同时还能够实时的向上位监控系统或者下位控制箱反馈机器人的当前状态信息。 研究开发出来的四关节实验室机器人控制器具有控制实时性好、定位精度高、运行稳定可靠的特点,它允许用户通过上位控制计算机实现对机器人的各种设定作业的控制,也可以让用户通过机器人控制箱现场对机器人进行回零、示教等各项操作。
上传时间: 2013-06-11
上传用户:edisonfather
本文是在基于ARM+FPGA 的硬件平台上进行嵌入式运动控制系统的设计,ARM实现应用管理,FPGA 实现插补运算,发出脉冲到伺服驱动系统,形成运动指令控制伺服电机运 转等。文中对FPG
标签: FPGA Control Design Motion
上传时间: 2013-04-24
上传用户:acwme
在机器人学的研究领域中,如何有效地提高机器人控制系统的控制性能始终是研究学者十分关注的一个重要内容。在分析了工业机器人的发展历程和机器人控制系统的研究现状后,本论文的主要目标是针对四关节实验室机器人特有的机械结构和数学模型,建立一个新型全数字的基于DSP和FPGA的机器人位置伺服控制系统的软、硬件平台,实现对四关节实验室机器人的精确控制。 本论文从实际情况出发,首先分析了所研究的四关节实验室机器人的本体结构,并对其抽象简化得到了它的运动学数学模型。在明确了实现机器人精确位置伺服控制的控制原理后,我们对机器人控制系统的诸多可行性方案进行了充分论证,并最终决定采用了三级CPU控制的控制体系结构:第一级CPU为上位计算机,它实现对机器人的系统管理、协调控制以及完成机器人实时轨迹规划等控制算法的运算;第二级CPU为高性能的DSP处理器,它辅之以具有高速并行处理能力的FPGA芯片,实现了对机器人多个关节的高速并行驱动;第三级CPU为交流伺服驱动处理器,它实现了机器人关节伺服电机的精确三闭环误差驱动控制,以及电机的故障诊断和自动保护等功能。此外,我们采用比普通UART速度快得多的USB来实现上位计算机.与下位控制器之间的数据通信,这样既保证了两者之间连接方便,又有效的提高了控制系统的通信速度和可靠性。 机器人系统的软件设计包括两个部分:一是采用VC++实现的上位监控软件系统,它主要负责机器人实时轨迹规划等控制算法的运算,同时完成用户与机器人系统之间的信息交互;二是采用C语言实现的下位DSP控制程序,它主要负责接收上位监控系统或者下位控制箱发送的控制信号,实现对机器人的实时驱动,同时还能够实时的向上位监控系统或者下位控制箱反馈机器人的当前状态信息。 研究开发出来的四关节实验室机器人控制器具有控制实时性好、定位精度高、运行稳定可靠的特点,它允许用户通过上位控制计算机实现对机器人的各种设定作业的控制,也可以让用户通过机器人控制箱现场对机器人进行回零、示教等各项操作。
上传时间: 2013-04-24
上传用户:极客
·直流电机试验方法+松下伺服电机使用手册
上传时间: 2013-06-10
上传用户:朗朗乾坤
三菱PLC伺服控制攻丝机电路图,12页电路图,很详细!
上传时间: 2013-05-16
上传用户:qazwsxedc
·详细说明:F2812交流伺服电机驱动(程序+论文)空间矢量变量定义文件列表: 2812交流伺服电机驱动(程序+论文) .................................\.............\demo .................................\.............\....\c
上传时间: 2013-04-24
上传用户:bpbao2016