C++编的普朗特—迈耶稀疏波 8.3节 普朗特—迈耶稀疏波流场的数值解
上传时间: 2016-06-08
上传用户:cbd24
二维射线追踪程序!matlab编写!! 地震声波正演源程序,,二维射线追踪程序!matlab编写!! 地震声波正演源程序,,二维射线追踪程序!matlab编写!
上传时间: 2016-06-13
上传用户:ls453206163
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
静电场分析用以确定由电荷分布或外加 电势所产生的电场和电标势(电压)分布。 该分析能加两种形式的载荷:电压和电 荷密度。 静电分析是假定为线性的,电场正比于 所加电压。
上传时间: 2016-11-03
上传用户:stalloy
这是个极为简单却非常通用、非常方便的成绩查询系统,通用于几乎所有Excel单二维数据表查询。只需修改 查询条件和顶部、底部文字(非常简单),即可用于几乎所有工资等查询,成绩查询,物业查询,收电费查询,录取查询,证书查询等场景哦。
上传时间: 2016-12-30
上传用户:jole12
编译原理 1、读取所有的输入的文本,存入一个二维数组。(数组的宽度固定) 2、对二维数组一行行进行处理 3、对文本进行操作的时候,创建两个临时字符数组,一个存储变量名,一个存储常量。 对某行进行遍历的时候,倘若碰到字母,就读完该单词并存储到临时数组里,进行基本字判断后输出。 光标往后移动该单词的长度后,继续循环。(比如读到的是end,那么我该行的光标就要+3,然后继续循环) 倘若读到数字也是一样,只是不需要判断基本字,所以更为简单。
标签: 编译原理
上传时间: 2017-06-20
上传用户:lbxxx
二维music代码。阵列数为8个,实现doa估计的仿真。
上传时间: 2018-05-02
上传用户:hongjin
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta) %[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta) %该函数用有限差分法求解有两种介质的正方形区域的二维拉普拉斯方程的数值解 %函数返回迭代因子、迭代次数以及迭代完成后所求区域内网格节点处的值 %a为正方形求解区域的边长 %r1,r2分别表示两种介质的电导率 %up,under分别为上下边界值 %num表示将区域每边的网格剖分个数 %deta为迭代过程中所允许的相对误差限 n=num+1; %每边节点数 U(n,n)=0; %节点处数值矩阵 N=0; %迭代次数初值 alpha=2/(1+sin(pi/num));%超松弛迭代因子 k=r1/r2; %两介质电导率之比 U(1,1:n)=up; %求解区域上边界第一类边界条件 U(n,1:n)=under; %求解区域下边界第一类边界条件 U(2:num,1)=0;U(2:num,n)=0; for i=2:num U(i,2:num)=up-(up-under)/num*(i-1);%采用线性赋值对上下边界之间的节点赋迭代初值 end G=1; while G>0 %迭代条件:不满足相对误差限要求的节点数目G不为零 Un=U; %完成第n次迭代后所有节点处的值 G=0; %每完成一次迭代将不满足相对误差限要求的节点数目归零 for j=1:n for i=2:num U1=U(i,j); %第n次迭代时网格节点处的值 if j==1 %第n+1次迭代左边界第二类边界条件 U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j)); end if (j>1)&&(j U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j)); U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的网格节点处的值 end if i==n+1-j %第n+1次迭代两介质分界面(与网格对角线重合)第二类边界条件 U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1))); end if j==n %第n+1次迭代右边界第二类边界条件 U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j)); end end end N=N+1 %显示迭代次数 Un1=U; %完成第n+1次迭代后所有节点处的值 err=abs((Un1-Un)./Un1);%第n+1次迭代与第n次迭代所有节点值的相对误差 err(1,1:n)=0; %上边界节点相对误差置零 err(n,1:n)=0; %下边界节点相对误差置零 G=sum(sum(err>deta))%显示每次迭代后不满足相对误差限要求的节点数目G end
标签: 有限差分
上传时间: 2018-07-13
上传用户:Kemin
利用电场积分方程(EFIE)开展无限长圆柱、椭圆柱在TM波激励下的电磁散射场计算,并利用解析解进行验证,同时利用MFIE开展TE波激励下的电磁散射特性计算
上传时间: 2018-08-08
上传用户:gls123