虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

一阶<b>微分方程</b>

  • 学生嘛

    学生嘛,所以自己用C写的runger kutta法解了个一阶微分方程,希望有点用哈!

    标签:

    上传时间: 2013-12-18

    上传用户:wff

  • C语言算法速查手册 书本附件

    第1章 绪论 1 1.1 程序设计语言概述 1 1.1.1 机器语言 1 1.1.2 汇编语言 2 1.1.3 高级语言 2 1.1.4 C语言 3 1.2 C语言的优点和缺点 4 1.2.1 C语言的优点 4 1.2.2 C语言的缺点 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的复杂度 8 1.3.3 算法的准确性 10 1.3.4 算法的稳定性 14 第2章 复数运算 18 2.1 复数的四则运算 18 2.1.1 [算法1] 复数乘法 18 2.1.2 [算法2] 复数除法 20 2.1.3 【实例5】 复数的四则运算 22 2.2 复数的常用函数运算 23 2.2.1 [算法3] 复数的乘幂 23 2.2.2 [算法4] 复数的n次方根 25 2.2.3 [算法5] 复数指数 27 2.2.4 [算法6] 复数对数 29 2.2.5 [算法7] 复数正弦 30 2.2.6 [算法8] 复数余弦 32 2.2.7 【实例6】 复数的函数运算 34 第3章 多项式计算 37 3.1 多项式的表示方法 37 3.1.1 系数表示法 37 3.1.2 点表示法 38 3.1.3 [算法9] 系数表示转化为点表示 38 3.1.4 [算法10] 点表示转化为系数表示 42 3.1.5 【实例7】 系数表示法与点表示法的转化 46 3.2 多项式运算 47 3.2.1 [算法11] 复系数多项式相乘 47 3.2.2 [算法12] 实系数多项式相乘 50 3.2.3 [算法13] 复系数多项式相除 52 3.2.4 [算法14] 实系数多项式相除 54 3.2.5 【实例8】 复系数多项式的乘除法 56 3.2.6 【实例9】 实系数多项式的乘除法 57 3.3 多项式的求值 59 3.3.1 [算法15] 一元多项式求值 59 3.3.2 [算法16] 一元多项式多组求值 60 3.3.3 [算法17] 二元多项式求值 63 3.3.4 【实例10】 一元多项式求值 65 3.3.5 【实例11】 二元多项式求值 66 第4章 矩阵计算 68 4.1 矩阵相乘 68 4.1.1 [算法18] 实矩阵相乘 68 4.1.2 [算法19] 复矩阵相乘 70 4.1.3 【实例12】 实矩阵与复矩阵的乘法 72 4.2 矩阵的秩与行列式值 73 4.2.1 [算法20] 求矩阵的秩 73 4.2.2 [算法21] 求一般矩阵的行列式值 76 4.2.3 [算法22] 求对称正定矩阵的行列式值 80 4.2.4 【实例13】 求矩阵的秩和行列式值 82 4.3 矩阵求逆 84 4.3.1 [算法23] 求一般复矩阵的逆 84 4.3.2 [算法24] 求对称正定矩阵的逆 90 4.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 92 4.3.4 【实例14】 验证矩阵求逆算法 97 4.3.5 【实例15】 验证T矩阵求逆算法 99 4.4 矩阵分解与相似变换 102 4.4.1 [算法26] 实对称矩阵的LDL分解 102 4.4.2 [算法27] 对称正定实矩阵的Cholesky分解 104 4.4.3 [算法28] 一般实矩阵的全选主元LU分解 107 4.4.4 [算法29] 一般实矩阵的QR分解 112 4.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 116 4.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 121 4.4.7 【实例16】 对一般实矩阵进行QR分解 126 4.4.8 【实例17】 对称矩阵的相似变换 127 4.4.9 【实例18】 一般实矩阵相似变换 129 4.5 矩阵特征值的计算 130 4.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 130 4.5.2 [算法33] 求对称三对角阵的全部特征值 137 4.5.3 [算法34] 求对称矩阵特征值的雅可比法 143 4.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 147 4.5.5 【实例19】 求上Hessen-Burg矩阵特征值 151 4.5.6 【实例20】 分别用两种雅克比法求对称矩阵特征值 152 第5章 线性代数方程组的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 155 5.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 160 5.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 163 5.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 168 5.1.5 [算法40] 求解大型稀疏系数矩阵方程组的高斯-约当消去法 171 5.1.6 [算法41] 求解三对角线方程组的追赶法 174 5.1.7 [算法42] 求解带型方程组的方法 176 5.1.8 【实例21】 解线性实系数方程组 179 5.1.9 【实例22】 解线性复系数方程组 180 5.1.10 【实例23】 解三对角线方程组 182 5.2 矩阵分解法 184 5.2.1 [算法43] 求解对称方程组的LDL分解法 184 5.2.2 [算法44] 求解对称正定方程组的Cholesky分解法 186 5.2.3 [算法45] 求解线性最小二乘问题的QR分解法 188 5.2.4 【实例24】 求解对称正定方程组 191 5.2.5 【实例25】 求解线性最小二乘问题 192 5.3 迭代方法 193 5.3.1 [算法46] 病态方程组的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德尔迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解对称正定方程组的共轭梯度方法 205 5.3.6 [算法51] 求解托伯利兹方程组的列文逊方法 209 5.3.7 【实例26】 解病态方程组 214 5.3.8 【实例27】 用迭代法解方程组 215 5.3.9 【实例28】 求解托伯利兹方程组 217 第6章 非线性方程与方程组的求解 219 6.1 非线性方程求根的基本过程 219 6.1.1 确定非线性方程实根的初始近似值或根的所在区间 219 6.1.2 求非线性方程根的精确解 221 6.2 求非线性方程一个实根的方法 221 6.2.1 [算法52] 对分法 221 6.2.2 [算法53] 牛顿法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【实例29】 用对分法求非线性方程组的实根 232 6.2.6 【实例30】 用牛顿法求非线性方程组的实根 233 6.2.7 【实例31】 用插值法求非线性方程组的实根 235 6.2.8 【实例32】 用埃特金迭代法求非线性方程组的实根 237 6.3 求实系数多项式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【实例33】 用QR方法求解多项式的全部根 240 6.4 求非线性方程组一组实根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 拟牛顿法 244 6.4.3 【实例34】 用梯度法计算非线性方程组的一组实根 250 6.4.4 【实例35】 用拟牛顿法计算非线性方程组的一组实根 252 第7章 代数插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 线性插值 255 7.1.2 [算法60] 二次抛物线插值 256 7.1.3 [算法61] 全区间插值 259 7.1.4 【实例36】 拉格朗日插值 262 7.2 埃尔米特插值 263 7.2.1 [算法62] 埃尔米特不等距插值 263 7.2.2 [算法63] 埃尔米特等距插值 267 7.2.3 【实例37】 埃尔米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【实例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【实例39】 光滑插值 286 7.5 三次样条插值 287 7.5.1 [算法68] 第一类边界条件的三次样条函数插值 287 7.5.2 [算法69] 第二类边界条件的三次样条函数插值 292 7.5.3 [算法70] 第三类边界条件的三次样条函数插值 296 7.5.4 【实例40】 样条插值法 301 7.6 连分式插值 303 7.6.1 [算法71] 连分式插值 304 7.6.2 【实例41】 验证连分式插值的函数 308 第8章 数值积分法 309 8.1 变步长求积法 310 8.1.1 [算法72] 变步长梯形求积法 310 8.1.2 [算法73] 自适应梯形求积法 313 8.1.3 [算法74] 变步长辛卜生求积法 316 8.1.4 [算法75] 变步长辛卜生二重积分方法 318 8.1.5 [算法76] 龙贝格积分 322 8.1.6 【实例42】 变步长积分法进行一重积分 325 8.1.7 【实例43】 变步长辛卜生积分法进行二重积分 326 8.2 高斯求积法 328 8.2.1 [算法77] 勒让德-高斯求积法 328 8.2.2 [算法78] 切比雪夫求积法 331 8.2.3 [算法79] 拉盖尔-高斯求积法 334 8.2.4 [算法80] 埃尔米特-高斯求积法 336 8.2.5 [算法81] 自适应高斯求积方法 337 8.2.6 【实例44】 有限区间高斯求积法 342 8.2.7 【实例45】 半无限区间内高斯求积法 343 8.2.8 【实例46】 无限区间内高斯求积法 345 8.3 连分式法 346 8.3.1 [算法82] 计算一重积分的连分式方法 346 8.3.2 [算法83] 计算二重积分的连分式方法 350 8.3.3 【实例47】 连分式法进行一重积分 354 8.3.4 【实例48】 连分式法进行二重积分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法进行一重积分 356 8.4.2 [算法85] 蒙特卡洛法进行二重积分 358 8.4.3 【实例49】 一重积分的蒙特卡洛法 360 8.4.4 【实例50】 二重积分的蒙特卡洛法 361 第9章 常微分方程(组)初值问题的求解 363 9.1 欧拉方法 364 9.1.1 [算法86] 定步长欧拉方法 364 9.1.2 [算法87] 变步长欧拉方法 366 9.1.3 [算法88] 改进的欧拉方法 370 9.1.4 【实例51】 欧拉方法求常微分方程数值解 372 9.2 龙格-库塔方法 376 9.2.1 [算法89] 定步长龙格-库塔方法 376 9.2.2 [算法90] 变步长龙格-库塔方法 379 9.2.3 [算法91] 变步长基尔方法 383 9.2.4 【实例52】 龙格-库塔方法求常微分方程的初值问题 386 9.3 线性多步法 390 9.3.1 [算法92] 阿当姆斯预报校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全区间积分的双边法 399 9.3.4 【实例53】 线性多步法求常微分方程组初值问题 401 第10章 拟合与逼近 405 10.1 一元多项式拟合 405 10.1.1 [算法95] 最小二乘拟合 405 10.1.2 [算法96] 最佳一致逼近的里米兹方法 412 10.1.3 【实例54】 一元多项式拟合 417 10.2 矩形区域曲面拟合 419 10.2.1 [算法97] 矩形区域最小二乘曲面拟合 419 10.2.2 【实例55】 二元多项式拟合 428 第11章 特殊函数 430 11.1 连分式级数和指数积分 430 11.1.1 [算法98] 连分式级数求值 430 11.1.2 [算法99] 指数积分 433 11.1.3 【实例56】 连分式级数求值 436 11.1.4 【实例57】 指数积分求值 438 11.2 伽马函数 439 11.2.1 [算法100] 伽马函数 439 11.2.2 [算法101] 贝塔函数 441 11.2.3 [算法102] 阶乘 442 11.2.4 【实例58】 伽马函数和贝塔函数求值 443 11.2.5 【实例59】 阶乘求值 444 11.3 不完全伽马函数 445 11.3.1 [算法103] 不完全伽马函数 445 11.3.2 [算法104] 误差函数 448 11.3.3 [算法105] 卡方分布函数 450 11.3.4 【实例60】 不完全伽马函数求值 451 11.3.5 【实例61】 误差函数求值 452 11.3.6 【实例62】 卡方分布函数求值 453 11.4 不完全贝塔函数 454 11.4.1 [算法106] 不完全贝塔函数 454 11.4.2 [算法107] 学生分布函数 457 11.4.3 [算法108] 累积二项式分布函数 458 11.4.4 【实例63】 不完全贝塔函数求值 459 11.5 贝塞尔函数 461 11.5.1 [算法109] 第一类整数阶贝塞尔函数 461 11.5.2 [算法110] 第二类整数阶贝塞尔函数 466 11.5.3 [算法111] 变型第一类整数阶贝塞尔函数 469 11.5.4 [算法112] 变型第二类整数阶贝塞尔函数 473 11.5.5 【实例64】 贝塞尔函数求值 476 11.5.6 【实例65】 变型贝塞尔函数求值 477 11.6 Carlson椭圆积分 479 11.6.1 [算法113] 第一类椭圆积分 479 11.6.2 [算法114] 第一类椭圆积分的退化形式 481 11.6.3 [算法115] 第二类椭圆积分 483 11.6.4 [算法116] 第三类椭圆积分 486 11.6.5 【实例66】 第一类勒让德椭圆函数积分求值 490 11.6.6 【实例67】 第二类勒让德椭圆函数积分求值 492 第12章 极值问题 494 12.1 一维极值求解方法 494 12.1.1 [算法117] 确定极小值点所在的区间 494 12.1.2 [算法118] 一维黄金分割搜索 499 12.1.3 [算法119] 一维Brent方法 502 12.1.4 [算法120] 使用一阶导数的Brent方法 506 12.1.5 【实例68】 使用黄金分割搜索法求极值 511 12.1.6 【实例69】 使用Brent法求极值 513 12.1.7 【实例70】 使用带导数的Brent法求极值 515 12.2 多元函数求极值 517 12.2.1 [算法121] 不需要导数的一维搜索 517 12.2.2 [算法122] 需要导数的一维搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共轭梯度法 525 12.2.5 [算法125] 准牛顿法 531 12.2.6 【实例71】 验证不使用导数的一维搜索 536 12.2.7 【实例72】 用Powell算法求极值 537 12.2.8 【实例73】 用共轭梯度法求极值 539 12.2.9 【实例74】 用准牛顿法求极值 540 12.3 单纯形法 542 12.3.1 [算法126] 求无约束条件下n维极值的单纯形法 542 12.3.2 [算法127] 求有约束条件下n维极值的单纯形法 548 12.3.3 [算法128] 解线性规划问题的单纯形法 556 12.3.4 【实例75】 用单纯形法求无约束条件下N维的极值 568 12.3.5 【实例76】 用单纯形法求有约束条件下N维的极值 569 12.3.6 【实例77】 求解线性规划问题 571 第13章 随机数产生与统计描述 574 13.1 均匀分布随机序列 574 13.1.1 [算法129] 产生0到1之间均匀分布的一个随机数 574 13.1.2 [算法130] 产生0到1之间均匀分布的随机数序列 576 13.1.3 [算法131] 产生任意区间内均匀分布的一个随机整数 577 13.1.4 [算法132] 产生任意区间内均匀分布的随机整数序列 578 13.1.5 【实例78】 产生0到1之间均匀分布的随机数序列 580 13.1.6 【实例79】 产生任意区间内均匀分布的随机整数序列 581 13.2 正态分布随机序列 582 13.2.1 [算法133] 产生任意均值与方差的正态分布的一个随机数 582 13.2.2 [算法134] 产生任意均值与方差的正态分布的随机数序列 585 13.2.3 【实例80】 产生任意均值与方差的正态分布的一个随机数 587 13.2.4 【实例81】 产生任意均值与方差的正态分布的随机数序列 588 13.3 统计描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同时的t分布检验 591 13.3.3 [算法137] 方差不同时的t分布检验 594 13.3.4 [算法138] 方差的F检验 596 13.3.5 [算法139] 卡方检验 599 13.3.6 【实例82】 计算随机样本的矩 601 13.3.7 【实例83】 t分布检验 602 13.3.8 【实例84】 F分布检验 605 13.3.9 【实例85】 检验卡方检验的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序数组的二分查找 609 14.1.2 [算法141] 无序数组同时查找最大和最小的元素 611 14.1.3 [算法142] 无序数组查找第M小的元素 613 14.1.4 【实例86】 基本查找 615 14.2 结构体和磁盘文件的查找 617 14.2.1 [算法143] 无序结构体数组的顺序查找 617 14.2.2 [算法144] 磁盘文件中记录的顺序查找 618 14.2.3 【实例87】 结构体数组和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函数 622 14.3.2 [算法146] 哈希函数 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中删除元素 631 14.3.6 【实例88】 构造哈希表并进行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希尔排序 637 15.1.3 【实例89】 插入排序 639 15.2 交换排序 641 15.2.1 [算法152] 气泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【实例90】 交换排序 644 15.3 选择排序 646 15.3.1 [算法154] 直接选择排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【实例91】 选择排序 650 15.4 线性时间排序 651 15.4.1 [算法156] 计数排序 651 15.4.2 [算法157] 基数排序 653 15.4.3 【实例92】 线性时间排序 656 15.5 归并排序 657 15.5.1 [算法158] 二路归并排序 658 15.5.2 【实例93】 二路归并排序 660 第16章 数学变换与滤波 662 16.1 快速傅里叶变换 662 16.1.1 [算法159] 复数据快速傅里叶变换 662 16.1.2 [算法160] 复数据快速傅里叶逆变换 666 16.1.3 [算法161] 实数据快速傅里叶变换 669 16.1.4 【实例94】 验证傅里叶变换的函数 671 16.2 其他常用变换 674 16.2.1 [算法162] 快速沃尔什变换 674 16.2.2 [算法163] 快速哈达玛变换 678 16.2.3 [算法164] 快速余弦变换 682 16.2.4 【实例95】 验证沃尔什变换和哈达玛的函数 684 16.2.5 【实例96】 验证离散余弦变换的函数 687 16.3 平滑和滤波 688 16.3.1 [算法165] 五点三次平滑 689 16.3.2 [算法166] α-β-γ滤波 690 16.3.3 【实例97】 验证五点三次平滑 692 16.3.4 【实例98】 验证α-β-γ滤波算法 693  

    标签: C 算法 附件 源代码

    上传时间: 2015-06-29

    上传用户:cbsdukaf

  • 一维DG1d间断有限元求解burgers方程

    用间断有限元方法求解偏微分方程,经典burgers方程,用c++写的代码,环境是VS2013,直接可以执行的

    标签: burgers DG1d 有限元 方程

    上传时间: 2016-07-11

    上传用户:shangdafreya

  • 常微分论文

    一篇关于常微分方程的论文,希望对初次接触常微分方程的同学有所帮助

    标签: 微分 论文

    上传时间: 2017-12-12

    上传用户:xxxxt

  • Fortran四阶龙格库塔

    采用四阶龙格库塔法求解初值微分方程,采用Fortran语言进行编译

    标签: Fortran

    上传时间: 2018-06-07

    上传用户:zhuchenmp

  • 偏微分方程第二版evans

    这是EVANS所著的Partial Differential Equations第二版。这是一本十分经典的偏微分教材,适合高年级本科生和研究生深入阅读、学习

    标签: evans 偏微分方程

    上传时间: 2019-06-13

    上传用户:sheyd

  • 分数阶微积分的若干理论及应用

    在1974年以后,分数阶微积分有了飞速的发展.它与分数阶微分方程四无论从理论上还是应用上都发展迅速,应用领域越来越广,并且有了许多有关的专著以及论文集,并开始呈现出全面地推广到常微分方程[2.1甚至泛函微分方程的层而上分数阶理论.在分数阶微积分理论的研究过程中,其优势主要体现在:1.分数阶导数的全局相关性很好的解决了具有局部性的整数阶导数不能够很好地描述出系统函数发展的历史依赖过程的问题;2.分数阶导数仅仅是用很少的几个参数就能获得好的效果,克服了经典的整数阶微分模型不能很好地与实验结果相吻合这个严重缺点;3.分数阶模型在描述复杂的物理学问题时,比起非线性模型,其物理意义更清晰且表达更简练.

    标签: 分数阶微积分

    上传时间: 2022-06-25

    上传用户:aben

  • 电压互感器的现代设计方法研究.rar

    目前,在电压互感器设计中,虽有人进行过可靠性设计利优化设计方面的研究,但采用的方法仍为传统方法.本文采用现代设计方法,它将有限元分析、可靠性设计技术利优化设计技术有机的结合起来,因此采用现代设计方法得到的方案比利用传统设计方法设计出的方案更加经济合理.首先,本文简单介绍了电压互感器的原理,描述了电压互感器的分类、基本参数和误差分析.第二,本文研究了电磁场有限元分析原理,介绍了麦克斯韦方程和电磁场微分方程.本文采用大型通用有限元分析软件ANSYS对电压互感器进行二维电磁场有限元分析,对电压互感器建立了有限元数学模型和网格剖分,对有限元模型加载了边界条件并进行了求解.研究了二维磁场分析单元PLANE53单元利电路模拟单元CIRCU124单元的特点及使用方法.第三,对电压互感器的瓷套部分进行了可靠性设计.瓷套所受的弯曲负荷应力很多,主要包括:风力负荷产生的弯曲应力,地震负荷产生的弯曲应力,产品运输中倾斜产生的弯曲应力.本文研究了瓷套的应力分布的确定方法,将多种应力叠加在一起,推出了应力分布参数的计算公式.瓷套的应力、强度利各设计变量均可认为服从正态分布,在设计时作为正态分布变量处理.本文应用应力-强度干涉理论,对电压互感器瓷套的可靠性设计方法进行了研究.第四,研究了ANSYS软件的优化设计模块,研究了采用ANSYS软件进行优化设计的步骤和优化工具及方法.利用ANSYS软件的参数化设计语言与其OPT模块,实现了有限元数值计算与优化设计的有机结合.并以额定一次电压35KV,额定二次电压100V,额定频率50HZ的电压互感器为例,进行了有限元分析计算利优化设计.根据电压互感器产品设计的实际情况,确定设计变量为绕组导线规格和铁心结构尺寸.优化循环结束以后,可以选择列出所有参数的数值,也可以只列出优化变量,可以用图显示指定的参数随序列号的变化情况,通过多方案的比较,得到最优方案.将现代设计方法应用于生产厂家,可节省研究开支,大大缩短开发周期,减少计算误差,减少试验费用,降低成本,提高产品的可靠性,因此本项目的研究具有良好的经济效益和社会效益.

    标签: 电压互感器 设计方法

    上传时间: 2013-06-10

    上传用户:tuilp1a

  • 无铁心永磁电机三维开域磁场计算与分析.rar

    开发和研制无铁心永磁电机是当前电机领域的一项重要课题,无铁心永磁电机可以解决传统有铁心电机存在的重量重、损耗高、振动噪声大等问题。开发无铁心永磁电机需要准确计算电机的参数和性能,而实现这一任务的重要前提是获得正确的磁场分布。无铁心永磁电机气隙外没有铁磁材料,其自身的结构特点决定了无铁心永磁电机的气隙磁场属于三维开域磁场,开域磁场工程问题的计算是近年来计算电磁学的研究热点之一。 本文的研究内容是国家高技术研究发展(863)计划项目“新型稀土永磁电机设计与集成技术”的关键技术之一。针对无铁心永磁电机的实际工程问题,计算方法的选择力求既能保证一定的计算精度,又能节约计算机内存和CPU时间。根据对各种开域电磁场计算方法的分析比较,本文将渐近边界条件法和有限元法结合解决无铁心永磁电机三维开域磁场计算问题。 本文主要由以下几部分组成: 第一部分为无铁心永磁电机三维开域磁场计算方法的研究。首先提出了基于标量磁位的渐近边界条件,建立了球形边界的标量磁位渐近边界条件数学模型。为了尽可能减少节点的数量,结合无铁心永磁电机的具体结构,推导了适合于盒形截断边界和圆柱形截断边界上简便易行的一阶和二阶标量渐近边界条件算子,该算子具有简单、有限元实施容易的特点。其次研究并建立了标量渐近边界条件与有限元法结合的三维开域静磁场的数学模型,并提出具体的实施方法,推导出相应的离散方程。通过对具有解析解的长方永磁体三维开域磁场的实例计算,验证了方法和所编程序的正确性,并将渐近边界条件法与截断法在计算精度和人工外边界距离方面做了比较。结果表明:在相同人工外边界情况下,渐近边界条件与截断边界条件相比,计算精度明显提高,二阶渐近边界条件明显优于一阶渐近边界条件。与截断法相比,渐近边界条件法更节约计算机内存和CPU时间,比较好地处理了计算量与计算精度之间的矛盾。 第二部分针对Halbach阵列内转子无铁心永磁电机三维开域磁场问题进行深入研究。利用渐近边界条件法,定量地计算了在定转子均无铁心的情况下电机内部及周围磁场的大小,总结出了Halbach阵列无铁心永磁电机磁场的空间分布规律。 第三部分针对不同拓扑结构的Halbach磁体阵列电机磁场问题进行对比研究。通过大量的计算,探讨了Halbach阵列永磁电机在转子无铁心情况下影响气隙磁密的各种因素,分析了不同Halbach磁体轴向长度对端部漏磁的影响规律,给出了无铁心永磁电机漏磁系数、电枢计算长度等主要设计参数随电机结构尺寸的变化规律。 第四部分针对具有试验数据的三种结构的无铁心永磁电机样机进行了计算和分析,计算结果与试验数据吻合,从而验证了渐近边界条件法处理三维开域磁场问题的有效性和实用性。

    标签: 永磁电机 磁场

    上传时间: 2013-06-22

    上传用户:ivan-mtk

  • 基于ARM的智能PID控制系统

    比例-积分-微分(PID)是过程控制中最常用的一种控制算法。算法简单而且容易理解,应用十分广泛。但由于应用领域的不同,功能上差别很大,系统的控制要求及关心的控制对象也不相同。数字PID控制比连续PID控制更为优越,因为计算机程序的灵活性,很容易克服连续PID控制中存在的问题,经修正而得到更完善的数字PID算法。本文以三相全控整流桥阻性负载为实际电路,控制主电路电压,旨在提出一种智能数字PID控制系统的设计思路,并给出了详细的硬件设计及初步软件设计思路。 PID控制系统采用高性能、低功耗的ARM微处理器S3C44BO作为核心处理单元,内部的10位ADC作为信号采集模块,采用了矩阵键盘和640*480的液晶作为人机接口;串口作为通信模块实现了上位机的监控。采用芯片内部自带的PWM模块,输出16M Hz PWM信号并经过一阶低通滤波器得到0~5V的控制信号用于触发主电路控制器,实现PID整定。 软件方面,分析和研究了uC/OSⅡ的内核源码,实现了其在32位微处理器上的移植,作为管理各个子程序执行的系统软件。选用了图形处理软件uC/GUI用于完成LCD显示及控制。PID算法采用了增量式数字PID算法,采用规一化算法进行参数选取。上位机部分采用了C#语言进行编写。另外,采用了RTC(Real Time Clock)作为系统时钟,可以实现系统的定时运行、定时模式切换等。在上位机上也可以方便的控制程序的执行,实现远程监控。 在论文的最后详细的介绍了智能PID控制系统在三相全控桥主电路中的具体应用。总结了调试中遇到的问题,对今后工作中需要进一步改善和探索的地方进行了展望。

    标签: ARM PID 控制系统

    上传时间: 2013-08-01

    上传用户:lvzhr