⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adder.vwf

📁 采用加法树流水线乘法构造八位乘法器
💻 VWF
📖 第 1 页 / 共 2 页
字号:
		LEVEL 1 FOR 410.0;
	}
}

TRANSITION_LIST("xa[5]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 270.0;
		LEVEL 1 FOR 320.0;
		LEVEL 0 FOR 320.0;
		LEVEL 1 FOR 90.0;
	}
}

TRANSITION_LIST("xa[4]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 110.0;
		NODE
		{
			REPEAT = 2;
			LEVEL 1 FOR 160.0;
			LEVEL 0 FOR 160.0;
		}
		LEVEL 1 FOR 160.0;
		LEVEL 0 FOR 90.0;
	}
}

TRANSITION_LIST("xa[3]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 30.0;
		NODE
		{
			REPEAT = 6;
			LEVEL 1 FOR 80.0;
			LEVEL 0 FOR 80.0;
		}
		LEVEL 1 FOR 10.0;
	}
}

TRANSITION_LIST("xa[2]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 1 FOR 30.0;
		NODE
		{
			REPEAT = 12;
			LEVEL 0 FOR 40.0;
			LEVEL 1 FOR 40.0;
		}
		LEVEL 0 FOR 10.0;
	}
}

TRANSITION_LIST("xa[1]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 10.0;
		NODE
		{
			REPEAT = 24;
			LEVEL 1 FOR 20.0;
			LEVEL 0 FOR 20.0;
		}
		LEVEL 1 FOR 20.0;
		LEVEL 0 FOR 10.0;
	}
}

TRANSITION_LIST("xa[0]")
{
	NODE
	{
		REPEAT = 1;
		NODE
		{
			REPEAT = 50;
			LEVEL 1 FOR 10.0;
			LEVEL 0 FOR 10.0;
		}
	}
}

TRANSITION_LIST("xb[7]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 1000.0;
	}
}

TRANSITION_LIST("xb[6]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 630.0;
		LEVEL 1 FOR 370.0;
	}
}

TRANSITION_LIST("xb[5]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 310.0;
		LEVEL 1 FOR 320.0;
		LEVEL 0 FOR 320.0;
		LEVEL 1 FOR 50.0;
	}
}

TRANSITION_LIST("xb[4]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 150.0;
		NODE
		{
			REPEAT = 2;
			LEVEL 1 FOR 160.0;
			LEVEL 0 FOR 160.0;
		}
		LEVEL 1 FOR 160.0;
		LEVEL 0 FOR 50.0;
	}
}

TRANSITION_LIST("xb[3]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 70.0;
		NODE
		{
			REPEAT = 5;
			LEVEL 1 FOR 80.0;
			LEVEL 0 FOR 80.0;
		}
		LEVEL 1 FOR 80.0;
		LEVEL 0 FOR 50.0;
	}
}

TRANSITION_LIST("xb[2]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 30.0;
		NODE
		{
			REPEAT = 12;
			LEVEL 1 FOR 40.0;
			LEVEL 0 FOR 40.0;
		}
		LEVEL 1 FOR 10.0;
	}
}

TRANSITION_LIST("xb[1]")
{
	NODE
	{
		REPEAT = 1;
		LEVEL 0 FOR 10.0;
		NODE
		{
			REPEAT = 24;
			LEVEL 1 FOR 20.0;
			LEVEL 0 FOR 20.0;
		}
		LEVEL 1 FOR 20.0;
		LEVEL 0 FOR 10.0;
	}
}

TRANSITION_LIST("xb[0]")
{
	NODE
	{
		REPEAT = 1;
		NODE
		{
			REPEAT = 50;
			LEVEL 1 FOR 10.0;
			LEVEL 0 FOR 10.0;
		}
	}
}

DISPLAY_LINE
{
	CHANNEL = "clk";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 0;
	TREE_LEVEL = 0;
}

DISPLAY_LINE
{
	CHANNEL = "rst";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 1;
	TREE_LEVEL = 0;
}

DISPLAY_LINE
{
	CHANNEL = "xa";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 2;
	TREE_LEVEL = 0;
	CHILDREN = 3, 4, 5, 6, 7, 8, 9, 10;
}

DISPLAY_LINE
{
	CHANNEL = "xa[7]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 3;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[6]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 4;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[5]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 5;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[4]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 6;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[3]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 7;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[2]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 8;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[1]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 9;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xa[0]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 10;
	TREE_LEVEL = 1;
	PARENT = 2;
}

DISPLAY_LINE
{
	CHANNEL = "xb";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 11;
	TREE_LEVEL = 0;
	CHILDREN = 12, 13, 14, 15, 16, 17, 18, 19;
}

DISPLAY_LINE
{
	CHANNEL = "xb[7]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 12;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[6]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 13;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[5]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 14;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[4]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 15;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[3]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 16;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[2]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 17;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[1]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 18;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "xb[0]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Unsigned;
	TREE_INDEX = 19;
	TREE_LEVEL = 1;
	PARENT = 11;
}

DISPLAY_LINE
{
	CHANNEL = "mult";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 20;
	TREE_LEVEL = 0;
	CHILDREN = 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36;
}

DISPLAY_LINE
{
	CHANNEL = "mult[15]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 21;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[14]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 22;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[13]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 23;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[12]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 24;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[11]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 25;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[10]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 26;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[9]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 27;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[8]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 28;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[7]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 29;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[6]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 30;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[5]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 31;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[4]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 32;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[3]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 33;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[2]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 34;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[1]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 35;
	TREE_LEVEL = 1;
	PARENT = 20;
}

DISPLAY_LINE
{
	CHANNEL = "mult[0]";
	EXPAND_STATUS = COLLAPSED;
	RADIX = Binary;
	TREE_INDEX = 36;
	TREE_LEVEL = 1;
	PARENT = 20;
}

TIME_BAR
{
	TIME = 12375;
	MASTER = TRUE;
}
;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -