📄 sdr_ctrl.vhd
字号:
---------------------------------------------------------------------------------------------------
--
-- Title : SDR_CTRL
-- Design : SDR_controller
-- Author : Michal Krepa
-- Company : XXX
--
---------------------------------------------------------------------------------------------------
--
-- File : SDR_CTRL.vhd
-- Generated : Tue Sep 16 10:07:58 2003
-- From : interface description file
-- By : Itf2Vhdl ver. 1.20
--
---------------------------------------------------------------------------------------------------
--
-- Description : Single data rate SDRAM controller
--
---------------------------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity SDR_CTRL is
generic(
data_width: positive := 32; -- host & SDRAM data width
rows: positive := 2048; -- number of rows in SDRAM array
columns: positive := 256; -- number of columns in SDRAM array
haddr_width: positive := 21; -- host-side address width
saddr_width: positive := 11 -- SDRAM-side address width
);
port(
-- host signals
CLK : in STD_LOGIC;
nRST : in std_logic;
ADDR : in std_logic_vector(haddr_width-1 downto 0);
DATA_IN : in std_logic_vector(data_width-1 downto 0);
nDTACK : out std_logic;
WnR : in std_logic;
nAS : in std_logic;
nLBE : in std_logic_vector(data_width/8-1 downto 0);
-- sdram signals
nCS : out STD_LOGIC;
nRAS : out STD_LOGIC;
nCAS : out STD_LOGIC;
nWE : out STD_LOGIC;
BS : out STD_LOGIC_vector(1 downto 0);
CKE : out STD_LOGIC;
DQM : out STD_LOGIC_VECTOR(data_width/8-1 downto 0);
DATA_OUT_SDR : out std_logic_vector(data_width-1 downto 0);
A : out STD_LOGIC_VECTOR(saddr_width-1 downto 0)
);
end SDR_CTRL;
architecture SDR_CTRL of SDR_CTRL is
function log2(v: in natural) return natural is
variable n: natural;
variable logn: natural;
begin
n := 1;
for i in 0 to 128 loop
logn := i;
exit when (n>=v);
n := n * 2;
end loop;
return logn;
end function log2;
constant CLOCK_PERIOD : positive := 30; -- in ns
-- burst size
constant burst : positive := 8;
-- enable/disable autoprecharge = 1/0
constant auto_precharge : std_logic := '0';
-- init refresh cycles
constant init_ref_cycles : natural := 2;
constant row_length: natural := log2(rows); -- number of row address bits
constant column_length: natural := log2(columns); -- number of column address bits
-- timing constants in ns:
--constant tRC : positive := 65;
constant tRCD : positive := 20;
constant tRP : positive := 20;
constant tREF : positive := 15000; -- for 1 row (for 4096 you need to divide number by 4096)
constant tRFC : positive := 65;
constant tWR : positive := CLOCK_PERIOD + 7;
-- sdram initialization time
-- fo eg.: if 100 us sdram initialization is needed, tSTARTUP_NOP should be 100000 [ns]
constant tSTARTUP_NOP : positive := 100000;
-- timing constants in cycles
-- actual cycles will be one cycle longer (every) because of state transition time (1 cycle time)
--constant tRC_CYCLES : natural := tRC / CLOCK_PERIOD; -- tRC_time = tRC_CYCLES + 1
constant tRCD_CYCLES : natural := tRCD / CLOCK_PERIOD; -- tRCD_time = tRCD_CYCLES + 1
constant tRP_CYCLES : natural := tRP / CLOCK_PERIOD; -- tRP_time = tRP_CYCLES + 1
constant tMRD_CYCLES : natural := 2; -- tMRD_time = 2 tCK
constant tREF_CYCLES : natural := tREF / CLOCK_PERIOD; -- tREF_time = tREF_CYCLES + 1
constant tRFC_CYCLES : NATURAL := tRFC / CLOCK_PERIOD; -- tRFC_time = tRFC_CYCLES + 1
constant tWR_CYCLES : natural := tWR / CLOCK_PERIOD; -- tWR_time = tWR_CYCLES + 1
constant tSTARTUP_NOP_CYCLES : positive := tSTARTUP_NOP / (2*CLOCK_PERIOD);
constant burst_size : std_logic_vector(2 downto 0) := conv_std_logic_vector(log2(burst),3);
constant CAS_LATENCY : positive := 2;
-- specified to supress simulation warnings from micron sdram models
constant hold_time: time:= 2 ns;
type state_type is (
initialize,
active,
read_data,
read,
write,
set_ModeRegister,
precharge,
auto_refresh,
nop
);
signal state : state_type;
signal refresh_req : std_logic; -- Refresh request signals
signal refresh_done_flg : std_logic;
signal refresh_timer : integer range 0 to tREF_CYCLES;
signal startup_timer : integer range 0 to tSTARTUP_NOP_CYCLES;
signal startup_pending : std_logic; -- '1' - in startup sequence
signal wait_counter : integer range 0 to 31; -- how many cycles wait until next command can be issued
signal init_refreshes : integer range 0 to init_ref_cycles; -- autorefresh commands needed in startup sequence
signal nAS_WAITING : std_logic; -- if read/write is waiting to be executed
signal CAS_counter : integer range 0 to 3;
signal execute_nop : std_logic;
signal nLBE_s : std_logic_vector(data_width/8-1 downto 0);
signal aref_enable : std_logic; -- autorefresh enable
signal bank_numb : std_logic_vector(BS'range);
signal row_addr : std_logic_vector(row_length-1 downto 0);
signal col_addr : std_logic_vector(column_length-1 downto 0);
signal WnR_S : std_logic;
signal burst_counter : integer range 0 to 7;
begin
-- Hold nAS
-- nAS - active low address strobe
ADS_DETECT: process(nRST, CLK)
begin
if nRST = '0' then
nAS_WAITING <= '0';
bank_numb <= (others => '0');
col_addr <= (others => '0');
row_addr <= (others => '0');
DATA_OUT_SDR <= (others => '0');
nLBE_s <= (others => '1');
elsif rising_edge(CLK) then
-- if address strobe latch address
if nAS='0' then
nAS_WAITING <= '1';
bank_numb <= ADDR(BS'length + row_length + column_length - 1 downto row_length + column_length) after hold_time;
row_addr <= ADDR(row_length+column_length-1 downto column_length) after hold_time;
col_addr <= ADDR(column_length-1 downto 0) after hold_time;
DATA_OUT_SDR <= DATA_IN after hold_time;
nLBE_s <= nLBE;
elsif state = active then
nAS_WAITING <= '0';
end if;
end if;
end process;
sdram_ctrl : process(CLK, nRST)
begin
if nRST = '0' then
CKE <= '0';
DQM <= (others => '1');
nCS <= '1';
nRAS <= '1';
nCAS <= '1';
nWE <= '1';
BS <= "00";
A <= (others => '0');
state <= initialize;
startup_pending <= '1';
wait_counter <= 0;
init_refreshes <= 0;
nDTACK <= '1';
CAS_counter <= 0;
burst_counter <= 0;
startup_timer <= 0;
refresh_done_flg <= '0';
WnR_S <= '0';
execute_nop <= '0';
aref_enable <= '1';
elsif rising_edge(CLK) then
case state is
--------------------------
-- initialization
--------------------------
when initialize =>
CKE <= '1';
nCS <= '0';
state <= nop after hold_time;
-----------------------------
-- MODE REGISTER SET command
-----------------------------
when set_ModeRegister =>
nCS <= '0' after hold_time;
nRAS <= '0' after hold_time;
nCAS <= '0' after hold_time;
nWE <= '0' after hold_time;
A <=
'0' -- should be '0' to ensure compability with future devices
& '1' -- write burst mode: '0' - programmed burst length; '1' - single acces location
& "00" -- operation mode: "00" - standard; others - reserved
& conv_std_logic_vector(CAS_Latency,3) -- CAS Latency
& '0' -- Burst Mode: '0' - sequence; '1' - interleave
& burst_size; -- BURST LENGTH of 8
-- after MRS command issue n nop cycles where n = tMRD_CYCLES
if execute_nop = '1' then
nCS <= '0' after hold_time;
nRAS <= '1' after hold_time;
nCAS <= '1' after hold_time;
nWE <= '1' after hold_time;
end if;
-- wait for tMRD_CYCLES before issue
if wait_counter < tMRD_CYCLES then
wait_counter <= wait_counter + 1;
execute_nop <= '1';
else
-- sdram initialization complete
wait_counter <= 0;
startup_pending <= '0';
nDTACK <= '0' after hold_time;
state <= nop after hold_time;
execute_nop <= '0';
end if;
--------------------------
-- NOP command
--------------------------
when nop =>
nCS <= '0' after hold_time;
nRAS <= '1' after hold_time;
nCAS <= '1' after hold_time;
nWE <= '1' after hold_time;
DQM <= (others => '0') after hold_time;
WnR_S <= WnR after hold_time;
execute_nop <= '0';
nDTACK <= '1' after hold_time;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -