⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 marsgpulib.cu

📁 GPU实现的MapReduce framework,对于学习并行编程和cuda平台的编程方面有着极好的参考价值
💻 CU
📖 第 1 页 / 共 2 页
字号:
/**
 *This is the source code for Mars, a MapReduce framework on graphics
 *processors.
 *Author: Wenbin Fang (HKUST), Bingsheng He (HKUST)
 *Mentor: Naga K. Govindaraju (Microsoft Corp.), Qiong Luo (HKUST), Tuyong
 *Wang (Sina.com).
 *If you have any question on the code, please contact us at {saven,
 *wenbin, luo}@cse.ust.hk.
 *The copyright is held by HKUST. Mars is provided "as is" without any 
 *guarantees of any kind.
 */

#undef __CPU_MAP__
#undef __CPU_REDUCE__
#undef __COMPARE__
#define __GPU_MAP__
#define __GPU_REDUCE__
#include "MarsInc.h"
#include "MarsInc/MarsConfig.h"
#include "MarsGPUEmit.cu"

//------------------------------------------------------
//get key/value in a record
//------------------------------------------------------
__device__ char *gpuGetRecordFromBuf(char *buf, 
			int4 *offsetSizes, int index, char type,
			 size_t keyOffset, size_t valOffset)
{
	int offset = ((type == 0)?(offsetSizes[index].x-keyOffset):
		(offsetSizes[index].z-valOffset));
	return (buf + offset);
}
 
//------------------------------------------------------
//efficiently copy data in gpu kernel function
//------------------------------------------------------
__device__ void copyData(char4 *des, char4 *src, size_t size)
{
	//if data size is less than 4, simply copy it
	if (size < 4)
	{
		for (int i = 0; i < size; i++)
			des[i] = src[i];
		return;
	} 
  
	//if data size is greater than 4, use vector
	int size4 = size >> 2;
 
	char *pDes = NULL;
	char *pSrc = NULL;

	for (int i = 0; i < size4; i++)
	{
		pDes = (char*)&des[i];
		pSrc = (char*)&src[i];

		for (int j = 0; j < 4; j++)
			pDes[j] = pSrc[j];
	}

	int remainder = size & 3;

	if (remainder > 0)
	{
		pDes += 4;
		pSrc += 4;

		for (int i = 0; i < remainder; i++)
			pDes[i] = pSrc[i];	
	}
}

__device__ char *gpuGetVal(void *vals, int4 *index, size_t valStartIndex,
				size_t valCount, size_t i)
{
	if (i >= valCount) return NULL;
	char *val = (char*)vals+index[valStartIndex+i].z - index[valStartIndex].z;
	//BenLog("--val:%d--", *(int*)val);
	return val;
}
 
__device__ size_t gpuGetValSize(void *vals, int4 *index, size_t valStartIndex,
				size_t valCount, size_t i)
{
	if (i >= valCount) return NULL;
	return index[valStartIndex+i].w;
}
//----------------------------------------------------
//called by 
//----------------------------------------------------
__device__ void gpuEmitInterCount(size_t	keySize,
						       size_t	valSize,
						       size_t*	interKeysSizePerTask,
						       size_t*	interValsSizePerTask,
						       size_t*	interCountPerTask)
{
	size_t index = (blockIdx.x * blockDim.x + threadIdx.x);	

	interKeysSizePerTask[index] += keySize;
	interValsSizePerTask[index] += valSize;
	interCountPerTask[index]++;
}

//-------------------------------------------------------
//gpu kernel function, called by StartGPUMap
//-------------------------------------------------------
__global__ void gpuMapCount(char*	inputKeys,
			char*	inputVals,
			int4*	inputOffsetSizes,
			size_t*	interKeysSizePerTask,
			size_t*	interValsSizePerTask,
			size_t*	interCountPerTask,
			size_t recordNum, 
			size_t recordsPerTask,
			size_t taskNum,
			size_t keyOffset,
			size_t valOffset)
{ 
	size_t index = (blockIdx.x * blockDim.x + threadIdx.x);

	for (int i = 0; i <= recordsPerTask; i++)
	{
                
		int cindex = i*taskNum+index;
		if (cindex >= recordNum) return;

		char *key = gpuGetRecordFromBuf(inputKeys,
			inputOffsetSizes, cindex, 0, keyOffset, valOffset);
		char *val = gpuGetRecordFromBuf(inputVals,
			inputOffsetSizes, cindex, 1, keyOffset, valOffset);
		gpu_map_count(key,
		          val,
				  inputOffsetSizes[cindex].y,
				  inputOffsetSizes[cindex].w,
				  interKeysSizePerTask,
				  interValsSizePerTask,
				  interCountPerTask);
	}
}
 
//-------------------------------------------------------
//gpu kernel function, called by StartGPUMap
//-------------------------------------------------------
__global__ void gpuMap(char*	inputKeys,
					   char*	inputVals,
					   int4*	inputOffsetSizes,
					   size_t*	psKeySizes,
					   size_t*	psValSizes,
					   size_t*	psCounts,
					   int2*	keyValOffsets,
					   char*	interKeys,
					   char*	interVals,
					   int4*	interOffsetSizes,
					   size_t*	curIndex,
					   size_t	recordNum, 
					   size_t	recordsPerTask,
					   size_t	taskNum,
					   size_t	keyOffset,
					   size_t	valOffset)
{
	size_t index = (blockIdx.x * blockDim.x + threadIdx.x);

	interOffsetSizes[psCounts[index]].x = psKeySizes[index];
	interOffsetSizes[psCounts[index]].z = psValSizes[index];

	for (int i = 0; i <= recordsPerTask; i++)
	{
		int cindex = i*taskNum+index;
		if (cindex >= recordNum) return;
		char *key = gpuGetRecordFromBuf(inputKeys, 
			inputOffsetSizes, cindex, 0, keyOffset, valOffset);
		char *val = gpuGetRecordFromBuf(inputVals, 
			inputOffsetSizes, cindex, 1, keyOffset, valOffset);
		
		gpu_map(key,
			val,
			inputOffsetSizes[cindex].y,
			inputOffsetSizes[cindex].w,
			psKeySizes,
			psValSizes,
			psCounts,
			keyValOffsets,
			interKeys,
			interVals,
			interOffsetSizes,
			curIndex);
	}	
}

//----------------------------------------------------
//main gpu map procedure
//----------------------------------------------------
void StartGPUMap(Schedule_t *sched, char mode)
{
	//D_ENTER_FUNC("StartGPUMap");
	//EnterFunc("StartGPUMap");
	BEN_ASSERT(sched != NULL);

	//-------------------------------------------------------
	//get map input data
	//-------------------------------------------------------
	//!!!need to be small chunk!!!!
	size_t	inputRecCount = sched->inputSmallChunk.recCount;
	size_t	inputKeySize = sched->inputSmallChunk.keySize;
	size_t	inputValSize = sched->inputSmallChunk.valSize;
	size_t	inputKeyOffset = sched->inputSmallChunk.keyOffset;
	size_t	inputValOffset = sched->inputSmallChunk.valOffset;

	if (inputRecCount <= 0) return;

	char *inputKeys = sched->inputSmallChunk.keys;
	char *inputVals = sched->inputSmallChunk.vals;
	int4 *inputIndex = sched->inputSmallChunk.index;
	//!!!
 
	//----------------------------------------------
	//determine the number of threads to run
	//----------------------------------------------
	size_t gridDim = sched->gpuMapGridDim;
	size_t blockDim = sched->gpuMapBlockDim;
	size_t sharedMemSize = sched->gpuMapSharedMemSize;
	size_t threadNum = sched->gpuMapGridDim*sched->gpuMapBlockDim;
	size_t recPerThread = inputRecCount / threadNum;
	if (0 == recPerThread)
		recPerThread = 1;
 
	//-------------------------------------------------------
	//upload map input data onto device memory
	//-------------------------------------------------------
	char*	d_inputKeys = D_MALLOC(inputKeySize);
	D_MEMCPY_H2D(d_inputKeys, inputKeys, inputKeySize);

	char*	d_inputVals = D_MALLOC(inputValSize);
	D_MEMCPY_H2D(d_inputVals, inputVals, inputValSize);

	int4*	d_inputIndex = (int4*)D_MALLOC(sizeof(int4)*inputRecCount);
	D_MEMCPY_H2D(d_inputIndex, inputIndex, sizeof(int4)*inputRecCount);

	//----------------------------------------------
	//calculate intermediate data keys'buf size 
	//	 and values' buf size
	//----------------------------------------------
	size_t*	d_interKeySizePerThread = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);
	size_t*	d_interValSizePerThread = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);
	size_t*	d_interCountPerThread = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);

	gpuMapCount<<<gridDim, blockDim, sharedMemSize>>>(d_inputKeys,
					   d_inputVals,
					   d_inputIndex,
					   d_interKeySizePerThread,
					   d_interValSizePerThread,
					   d_interCountPerThread,
					   inputRecCount, 
					   recPerThread,
					   threadNum,
					   inputKeyOffset,
					   inputValOffset);

	//----------------------------------------------
	//do prefix sum
	//----------------------------------------------
	size_t *d_psKeySizes = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);
	size_t allKeySize = prefexSum((int*)d_interKeySizePerThread, (int*)d_psKeySizes, threadNum);

	size_t *d_psValSizes = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);
	size_t allValSize = prefexSum((int*)d_interValSizePerThread, (int*)d_psValSizes, threadNum);

	size_t *d_psCounts = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);
	size_t allCounts = prefexSum((int*)d_interCountPerThread, (int*)d_psCounts, threadNum);

	//-----------------------------------------------
	//allocate intermediate memory on device memory
	//-----------------------------------------------
	char*	d_interKeys = NULL;
	char*	d_interVals = NULL;
	int4*	d_interIndex = NULL;
	int2*	d_keyValOffsets = NULL;
	size_t*	d_curIndex = NULL;

	if (allCounts == 0)
		goto GPU_MAP_EXIT;

	d_interKeys = D_MALLOC(allKeySize);
	d_interVals = D_MALLOC(allValSize);
	d_interIndex = (int4*)D_MALLOC(sizeof(int4)*allCounts);

	//--------------------------------------------------
	// start map
	//--------------------------------------------------
	d_keyValOffsets = (int2*)D_MALLOC(sizeof(int2)*threadNum);

	d_curIndex = (size_t*)D_MALLOC(sizeof(size_t)*threadNum);

	gpuMap<<<gridDim, blockDim, sharedMemSize>>>(d_inputKeys,
					  d_inputVals,
					  d_inputIndex,
					  d_psKeySizes,
					  d_psValSizes,
					  d_psCounts,
					  d_keyValOffsets,
					  d_interKeys,
					  d_interVals,
					  d_interIndex,
					  d_curIndex,
					  inputRecCount, 
					  recPerThread,
					  threadNum,
					  inputKeyOffset,
					  inputValOffset);


	sched->outputSmallChunk.keys = d_interKeys;
	sched->outputSmallChunk.vals = d_interVals;
	sched->outputSmallChunk.index = d_interIndex;
	sched->outputSmallChunk.keySize = allKeySize;
	sched->outputSmallChunk.valSize = allValSize;
	sched->outputSmallChunk.indexSize = allCounts*sizeof(int4);
	sched->outputSmallChunk.rangeSize = 0;//sizeof(int2)*interDiffKeyCount;
	sched->outputSmallChunk.recCount = allCounts;


	//PrintRecords(&(sched->outputSmallChunks[cur]), NULL, INT, INT, 100);
	//---------------------------------------------
	//clean
	//---------------------------------------------
GPU_MAP_EXIT:
	D_FREE(d_interKeySizePerThread, sizeof(size_t)*threadNum);
	D_FREE(d_interValSizePerThread, sizeof(size_t)*threadNum);
	D_FREE(d_interCountPerThread, sizeof(size_t)*threadNum);

//	D_FREE(d_interKeys, allKeySize);
//	D_FREE(d_interVals, allValSize);
//	D_FREE(d_interIndex, sizeof(int4)*allCounts);

	D_FREE(d_keyValOffsets, sizeof(int2)*threadNum);
	D_FREE(d_curIndex, sizeof(size_t)*threadNum);

	D_FREE(d_inputKeys, inputKeySize);
	D_FREE(d_inputVals, inputValSize);
	D_FREE(d_inputIndex, sizeof(int4)*inputRecCount);

	D_FREE(d_psKeySizes, sizeof(size_t)*threadNum);
	D_FREE(d_psValSizes, sizeof(size_t)*threadNum);
	D_FREE(d_psCounts, sizeof(size_t)*threadNum);

	//D_LEAVE_FUNC("StartGPUMap");
	//LeaveFunc("StartGPUMap");
}
 
void StartGPUSort_cpu(Schedule_t *sched, char mode)
{
	char *d_interKeys = sched->outputSmallChunk.keys;
	char *d_interVals = sched->outputSmallChunk.vals;
	int4 *d_interIndex = (int4*)sched->outputSmallChunk.index;

	size_t allKeySize = sched->outputSmallChunk.keySize;
	size_t allValSize = sched->outputSmallChunk.valSize;
	size_t allCounts = sched->outputSmallChunk.recCount;

	char *interKeys = (char*)BenMalloc(allKeySize);
	char *interVals = (char*)BenMalloc(allValSize);
	int4 *interIndex = (int4*)BenMalloc(sizeof(int4)*allCounts);

	D_MEMCPY_D2H(interKeys, d_interKeys, allKeySize);
	D_MEMCPY_D2H(interVals, d_interVals, allValSize);
	D_MEMCPY_D2H(interIndex, d_interIndex, sizeof(int4)*allCounts);

	sched->outputSmallChunk.keys = interKeys;
	sched->outputSmallChunk.vals = interVals;
	sched->outputSmallChunk.index = interIndex;

	if (mode & MAP_SORT || mode & MAP_SORT_REDUCE)
	{
		if (mode & USE_FILE)
			sched->outputSmallChunk.keyOffset = 0;
		QuickSortMem(&sched->outputSmallChunk);
		GroupByMem(&sched->outputSmallChunk);
		sched->outputSmallChunk.rangeSize = sched->outputSmallChunk.diffKeyCount*sizeof(int2);
	}  

	D_FREE(d_interKeys, allKeySize);
	D_FREE(d_interVals, allValSize);
	D_FREE(d_interIndex, sizeof(int4)*allCounts);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -