📄 uart_regs.v
字号:
end
wire lsr_mask_condition;
wire iir_read;
wire msr_read;
wire fifo_read;
wire fifo_write;
assign lsr_mask_condition = (re_i && addr_i == `UART_REG_LS && !dlab);
assign iir_read = (re_i && addr_i == `UART_REG_II && !dlab);
assign msr_read = (re_i && addr_i == `UART_REG_MS && !dlab);
assign fifo_read = (re_i && addr_i == `UART_REG_RB && !dlab);
assign fifo_write = (we_i && addr_i == `UART_REG_TR && !dlab);
// lsr_mask_d delayed signal handling
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
lsr_mask_d <= #1 0;
else // reset bits in the Line Status Register
lsr_mask_d <= #1 lsr_mask_condition;
end
// lsr_mask is rise detected
assign lsr_mask = lsr_mask_condition && ~lsr_mask_d;
// msi_reset signal handling
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
msi_reset <= #1 1;
else
if (msi_reset)
msi_reset <= #1 0;
else
if (msr_read)
msi_reset <= #1 1; // reset bits in Modem Status Register
end
//
// WRITES AND RESETS //
//
// Line Control Register
always @(posedge clk or posedge rst_i)
if (rst_i)
lcr <= #1 8'b00000011; // 8n1 setting
else
if (we_i && addr_i==`UART_REG_LC)
lcr <= #1 dat_i;
// Interrupt Enable Register or UART_DL2
always @(posedge clk or posedge rst_i)
if (rst_i)
begin
ier <= #1 4'b0000; // no interrupts after reset
dl[`UART_DL2] <= #1 8'b0;
end
else
if (we_i && addr_i==`UART_REG_IE)
if (dlab)
begin
dl[`UART_DL2] <= #1 dat_i;
end
else
ier <= #1 dat_i[3:0]; // ier uses only 4 lsb
// FIFO Control Register and rx_reset, tx_reset signals
always @(posedge clk or posedge rst_i)
if (rst_i) begin
fcr <= #1 2'b11;
rx_reset <= #1 0;
tx_reset <= #1 0;
end else
if (we_i && addr_i==`UART_REG_FC) begin
fcr <= #1 dat_i[7:6];
rx_reset <= #1 dat_i[1];
tx_reset <= #1 dat_i[2];
end else begin
rx_reset <= #1 0;
tx_reset <= #1 0;
end
// Modem Control Register
always @(posedge clk or posedge rst_i)
if (rst_i)
mcr <= #1 5'b0;
else
if (we_i && addr_i==`UART_REG_MC)
mcr <= #1 dat_i[4:0];
// Scratch register
// Line Control Register
always @(posedge clk or posedge rst_i)
if (rst_i)
scratch <= #1 0; // 8n1 setting
else
if (we_i && addr_i==`UART_REG_SR)
scratch <= #1 dat_i;
// TX_FIFO or UART_DL1
always @(posedge clk or posedge rst_i)
if (rst_i)
begin
dl[`UART_DL1] <= #1 8'b0;
tf_push <= #1 1'b0;
start_dlc <= #1 1'b0;
end
else
if (we_i && addr_i==`UART_REG_TR)
if (dlab)
begin
dl[`UART_DL1] <= #1 dat_i;
start_dlc <= #1 1'b1; // enable DL counter
tf_push <= #1 1'b0;
end
else
begin
tf_push <= #1 1'b1;
start_dlc <= #1 1'b0;
end // else: !if(dlab)
else
begin
start_dlc <= #1 1'b0;
tf_push <= #1 1'b0;
end // else: !if(dlab)
// Receiver FIFO trigger level selection logic (asynchronous mux)
always @(fcr)
case (fcr[`UART_FC_TL])
2'b00 : trigger_level = 1;
2'b01 : trigger_level = 4;
2'b10 : trigger_level = 8;
2'b11 : trigger_level = 14;
endcase // case(fcr[`UART_FC_TL])
//
// STATUS REGISTERS //
//
// Modem Status Register
reg [3:0] delayed_modem_signals;
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
begin
msr <= #1 0;
delayed_modem_signals[3:0] <= #1 0;
end
else begin
msr[`UART_MS_DDCD:`UART_MS_DCTS] <= #1 msi_reset ? 4'b0 :
msr[`UART_MS_DDCD:`UART_MS_DCTS] | ({dcd, ri, dsr, cts} ^ delayed_modem_signals[3:0]);
msr[`UART_MS_CDCD:`UART_MS_CCTS] <= #1 {dcd_c, ri_c, dsr_c, cts_c};
delayed_modem_signals[3:0] <= #1 {dcd, ri, dsr, cts};
end
end
// Line Status Register
// activation conditions
assign lsr0 = (rf_count==0 && rf_push_pulse); // data in receiver fifo available set condition
assign lsr1 = rf_overrun; // Receiver overrun error
assign lsr2 = rf_data_out[1]; // parity error bit
assign lsr3 = rf_data_out[0]; // framing error bit
assign lsr4 = rf_data_out[2]; // break error in the character
assign lsr5 = (tf_count==5'b0 && thre_set_en); // transmitter fifo is empty
assign lsr6 = (tf_count==5'b0 && thre_set_en && (tstate == /*`S_IDLE */ 0)); // transmitter empty
assign lsr7 = rf_error_bit | rf_overrun;
// lsr bit0 (receiver data available)
reg lsr0_d;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr0_d <= #1 0;
else lsr0_d <= #1 lsr0;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr0r <= #1 0;
else lsr0r <= #1 (rf_count==1 && rf_pop && !rf_push_pulse || rx_reset) ? 0 : // deassert condition
lsr0r || (lsr0 && ~lsr0_d); // set on rise of lsr0 and keep asserted until deasserted
// lsr bit 1 (receiver overrun)
reg lsr1_d; // delayed
always @(posedge clk or posedge rst_i)
if (rst_i) lsr1_d <= #1 0;
else lsr1_d <= #1 lsr1;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr1r <= #1 0;
else lsr1r <= #1 lsr_mask ? 0 : lsr1r || (lsr1 && ~lsr1_d); // set on rise
// lsr bit 2 (parity error)
reg lsr2_d; // delayed
always @(posedge clk or posedge rst_i)
if (rst_i) lsr2_d <= #1 0;
else lsr2_d <= #1 lsr2;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr2r <= #1 0;
else lsr2r <= #1 lsr_mask ? 0 : lsr2r || (lsr2 && ~lsr2_d); // set on rise
// lsr bit 3 (framing error)
reg lsr3_d; // delayed
always @(posedge clk or posedge rst_i)
if (rst_i) lsr3_d <= #1 0;
else lsr3_d <= #1 lsr3;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr3r <= #1 0;
else lsr3r <= #1 lsr_mask ? 0 : lsr3r || (lsr3 && ~lsr3_d); // set on rise
// lsr bit 4 (break indicator)
reg lsr4_d; // delayed
always @(posedge clk or posedge rst_i)
if (rst_i) lsr4_d <= #1 0;
else lsr4_d <= #1 lsr4;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr4r <= #1 0;
else lsr4r <= #1 lsr_mask ? 0 : lsr4r || (lsr4 && ~lsr4_d);
// lsr bit 5 (transmitter fifo is empty)
reg lsr5_d;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr5_d <= #1 1;
else lsr5_d <= #1 lsr5;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr5r <= #1 1;
else lsr5r <= #1 (fifo_write) ? 0 : lsr5r || (lsr5 && ~lsr5_d);
// lsr bit 6 (transmitter empty indicator)
reg lsr6_d;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr6_d <= #1 1;
else lsr6_d <= #1 lsr6;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr6r <= #1 1;
else lsr6r <= #1 (fifo_write) ? 0 : lsr6r || (lsr6 && ~lsr6_d);
// lsr bit 7 (error in fifo)
reg lsr7_d;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr7_d <= #1 0;
else lsr7_d <= #1 lsr7;
always @(posedge clk or posedge rst_i)
if (rst_i) lsr7r <= #1 0;
else lsr7r <= #1 lsr_mask ? 0 : lsr7r || (lsr7 && ~lsr7_d);
// Frequency divider
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
dlc <= #1 0;
else
if (start_dlc | ~ (|dlc))
dlc <= #1 dl - 1; // preset counter
else
dlc <= #1 dlc - 1; // decrement counter
end
// Enable signal generation logic
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
enable <= #1 1'b0;
else
if (|dl & ~(|dlc)) // dl>0 & dlc==0
enable <= #1 1'b1;
else
enable <= #1 1'b0;
end
// Delaying THRE status for one character cycle after a character is written to an empty fifo.
always @(lcr)
case (lcr[3:0])
4'b0000 : block_value = 95; // 6 bits
4'b0100 : block_value = 103; // 6.5 bits
4'b0001, 4'b1000 : block_value = 111; // 7 bits
4'b1100 : block_value = 119; // 7.5 bits
4'b0010, 4'b0101, 4'b1001 : block_value = 127; // 8 bits
4'b0011, 4'b0110, 4'b1010, 4'b1101 : block_value = 143; // 9 bits
4'b0111, 4'b1011, 4'b1110 : block_value = 159; // 10 bits
4'b1111 : block_value = 175; // 11 bits
endcase // case(lcr[3:0])
// Counting time of one character minus stop bit
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
block_cnt <= #1 8'd0;
else
if(lsr5r & fifo_write) // THRE bit set & write to fifo occured
block_cnt <= #1 block_value;
else
if (enable & block_cnt != 8'b0) // only work on enable times
block_cnt <= #1 block_cnt - 1; // decrement break counter
end // always of break condition detection
// Generating THRE status enable signal
assign thre_set_en = ~(|block_cnt);
//
// INTERRUPT LOGIC
//
assign rls_int = ier[`UART_IE_RLS] && (lsr[`UART_LS_OE] || lsr[`UART_LS_PE] || lsr[`UART_LS_FE] || lsr[`UART_LS_BI]);
assign rda_int = ier[`UART_IE_RDA] && (rf_count >= {1'b0,trigger_level});
assign thre_int = ier[`UART_IE_THRE] && lsr[`UART_LS_TFE];
assign ms_int = ier[`UART_IE_MS] && (| msr[3:0]);
assign ti_int = ier[`UART_IE_RDA] && (counter_t == 10'b0) && (|rf_count);
reg rls_int_d;
reg thre_int_d;
reg ms_int_d;
reg ti_int_d;
reg rda_int_d;
// delay lines
always @(posedge clk or posedge rst_i)
if (rst_i) rls_int_d <= #1 0;
else rls_int_d <= #1 rls_int;
always @(posedge clk or posedge rst_i)
if (rst_i) rda_int_d <= #1 0;
else rda_int_d <= #1 rda_int;
always @(posedge clk or posedge rst_i)
if (rst_i) thre_int_d <= #1 0;
else thre_int_d <= #1 thre_int;
always @(posedge clk or posedge rst_i)
if (rst_i) ms_int_d <= #1 0;
else ms_int_d <= #1 ms_int;
always @(posedge clk or posedge rst_i)
if (rst_i) ti_int_d <= #1 0;
else ti_int_d <= #1 ti_int;
// rise detection signals
wire rls_int_rise;
wire thre_int_rise;
wire ms_int_rise;
wire ti_int_rise;
wire rda_int_rise;
assign rda_int_rise = rda_int & ~rda_int_d;
assign rls_int_rise = rls_int & ~rls_int_d;
assign thre_int_rise = thre_int & ~thre_int_d;
assign ms_int_rise = ms_int & ~ms_int_d;
assign ti_int_rise = ti_int & ~ti_int_d;
// interrupt pending flags
reg rls_int_pnd;
reg rda_int_pnd;
reg thre_int_pnd;
reg ms_int_pnd;
reg ti_int_pnd;
// interrupt pending flags assignments
always @(posedge clk or posedge rst_i)
if (rst_i) rls_int_pnd <= #1 0;
else
rls_int_pnd <= #1 lsr_mask ? 0 : // reset condition
rls_int_rise ? 1 : // latch condition
rls_int_pnd && ier[`UART_IE_RLS]; // default operation: remove if masked
always @(posedge clk or posedge rst_i)
if (rst_i) rda_int_pnd <= #1 0;
else
rda_int_pnd <= #1 ((rf_count == {1'b0,trigger_level}) && fifo_read) ? 0 : // reset condition
rda_int_rise ? 1 : // latch condition
rda_int_pnd && ier[`UART_IE_RDA]; // default operation: remove if masked
always @(posedge clk or posedge rst_i)
if (rst_i) thre_int_pnd <= #1 0;
else
thre_int_pnd <= #1 fifo_write || (iir_read & ~iir[`UART_II_IP] & iir[`UART_II_II] == `UART_II_THRE)? 0 :
thre_int_rise ? 1 :
thre_int_pnd && ier[`UART_IE_THRE];
always @(posedge clk or posedge rst_i)
if (rst_i) ms_int_pnd <= #1 0;
else
ms_int_pnd <= #1 msr_read ? 0 :
ms_int_rise ? 1 :
ms_int_pnd && ier[`UART_IE_MS];
always @(posedge clk or posedge rst_i)
if (rst_i) ti_int_pnd <= #1 0;
else
ti_int_pnd <= #1 fifo_read ? 0 :
ti_int_rise ? 1 :
ti_int_pnd && ier[`UART_IE_RDA];
// end of pending flags
// INT_O logic
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
int_o <= #1 1'b0;
else
int_o <= #1
rls_int_pnd ? ~lsr_mask :
rda_int_pnd ? 1 :
ti_int_pnd ? ~fifo_read :
thre_int_pnd ? !(fifo_write & iir_read) :
ms_int_pnd ? ~msr_read :
0; // if no interrupt are pending
end
// Interrupt Identification register
always @(posedge clk or posedge rst_i)
begin
if (rst_i)
iir <= #1 1;
else
if (rls_int_pnd) // interrupt is pending
begin
iir[`UART_II_II] <= #1 `UART_II_RLS; // set identification register to correct value
iir[`UART_II_IP] <= #1 1'b0; // and clear the IIR bit 0 (interrupt pending)
end else // the sequence of conditions determines priority of interrupt identification
if (rda_int)
begin
iir[`UART_II_II] <= #1 `UART_II_RDA;
iir[`UART_II_IP] <= #1 1'b0;
end
else if (ti_int_pnd)
begin
iir[`UART_II_II] <= #1 `UART_II_TI;
iir[`UART_II_IP] <= #1 1'b0;
end
else if (thre_int_pnd)
begin
iir[`UART_II_II] <= #1 `UART_II_THRE;
iir[`UART_II_IP] <= #1 1'b0;
end
else if (ms_int_pnd)
begin
iir[`UART_II_II] <= #1 `UART_II_MS;
iir[`UART_II_IP] <= #1 1'b0;
end else // no interrupt is pending
begin
iir[`UART_II_II] <= #1 0;
iir[`UART_II_IP] <= #1 1'b1;
end
end
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -