📄 10.04.00_example_10-3.sv
字号:
/********************************************************************** * ATM squat top-level module * * To simulate this example with stimulus, invoke simulation on * 10.00.00_example_top.sv. This top-level file includes all of the * example files in chapter 10. * * Author: Lee Moore, Stuart Sutherland * * (c) Copyright 2003, Sutherland HDL, Inc. *** ALL RIGHTS RESERVED *** * www.sutherland-hdl.com * * This example is based on an example from Janick Bergeron's * Verification Guild[1]. The original example is a non-synthesizable * behavioral model written in Verilog-1995 of a quad Asynchronous * Transfer Mode (ATM) user-to-network interface and forwarding node. * This example modifies the original code to be synthesizable, using * SystemVerilog constructs. Also, the model has been made to be * configurable, so that it can be easily scaled from a 4x4 quad switch * to a 16x16 switch, or any other desired configuration. The example, * including a nominal test bench, is partitioned into 8 files, * numbered 10.xx.xx_example_10-1.sv through 10-8.sv (where xx * represents section and subsection numbers in the book "SystemVerilog * for Design" (first edition). The file 10.00.00_example_top.sv * includes all of the other files. Simulation only needs to be * invoked on this one file. Conditional compilation switches (`ifdef) * is used to compile the examples for simulation or for synthesis. * * [1] The Verification Guild is an independent e-mail newsletter and * moderated discussion forum on hardware verification. Information on * the original Verification Guild example can be found at * www.janick.bergeron.com/guild/project.html. * * Used with permission in the book, "SystemVerilog for Design" * By Stuart Sutherland, Simon Davidmann, and Peter Flake. * Book copyright: 2003, Kluwer Academic Publishers, Norwell, MA, USA * www.wkap.il, ISBN: 0-4020-7530-8 * * Revision History: * 1.00 15 Dec 2003 -- original code, as included in book * 1.01 10 Jul 2004 -- cleaned up comments, added expected results * to output messages * 1.10 21 Jul 2004 -- corrected errata as printed in the book * "SystemVerilog for Design" (first edition) and * to bring the example into conformance with the * final Accellera SystemVerilog 3.1a standard * (for a description of changes, see the file * "errata_SV-Design-book_26-Jul-2004.txt") * * Caveat: Expected results displayed for this code example are based * on an interpretation of the SystemVerilog 3.1 standard by the code * author or authors. At the time of writing, official SystemVerilog * validation suites were not available to validate the example. * * RIGHT TO USE: This code example, or any portion thereof, may be * used and distributed without restriction, provided that this entire * comment block is included with the example. * * DISCLAIMER: THIS CODE EXAMPLE IS PROVIDED "AS IS" WITHOUT WARRANTY * OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED * TO WARRANTIES OF MERCHANTABILITY, FITNESS OR CORRECTNESS. IN NO * EVENT SHALL THE AUTHOR OR AUTHORS BE LIABLE FOR ANY DAMAGES, * INCLUDING INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF THE * USE OF THIS CODE. *********************************************************************/`include "10.00.00_definitions.sv" // include external definitionsmodule squat #(parameter int NumRx = 4, parameter int NumTx = 4) (// NumRx x Level 1 Utopia ATM layer Rx Interfaces Utopia /* .TopReceive */ Rx[0:NumRx-1], // NumTx x Level 1 Utopia ATM layer Tx Interfaces Utopia /* .TopTransmit */ Tx[0:NumTx-1], // Utopia Level 2 parallel management interface // Intel-style Utopia parallel management interface CPU.Peripheral mif, // Miscellaneous control interfaces input wire rst, clk ); // Register file LookupTable #(.Asize(8), .dType(CellCfgType)) lut(); // // Hardware reset // logic reset; always_ff @(posedge clk) begin reset <= rst; end const bit [2:0] WriteCycle = 3'b010; const bit [2:0] ReadCycle = 3'b001; always_latch begin // configure look-up table if (mif.BusMode == 1'b1) begin /*unique*/ case ({mif.Sel, mif.Rd_DS, mif.Wr_RW}) WriteCycle: lut.write(mif.Addr, mif.DataIn); endcase end end always_comb begin mif.Rdy_Dtack <= 1'bz; mif.DataOut <= 8'hzz; if (mif.BusMode == 1'b1) begin /*unique*/ case ({mif.Sel, mif.Rd_DS, mif.Wr_RW}) WriteCycle: mif.Rdy_Dtack <= 1'b0; ReadCycle: begin mif.Rdy_Dtack <= 1'b0; mif.DataOut <= lut.read(mif.Addr); end endcase end end // // ATM-layer Utopia interface receivers // genvar RxIter; generate for (RxIter=0; RxIter<NumRx; RxIter+=1) begin: RxGen assign Rx[RxIter].clk_in = clk; assign Rx[RxIter].reset = reset; utopia1_atm_rx atm_rx(Rx[RxIter].CoreReceive); end endgenerate // // ATM-layer Utopia interface transmitters // genvar TxIter; generate for (TxIter=0; TxIter<NumTx; TxIter+=1) begin: TxGen assign Tx[TxIter].clk_in = clk; assign Tx[TxIter].reset = reset; utopia1_atm_tx atm_tx(Tx[TxIter].CoreTransmit); end endgenerate // // Function to compute the HEC value // function bit [7:0] hec (input bit [31:0] hdr); bit [7:0] syndrom[0:255]; bit [7:0] RtnCode; bit [7:0] sndrm; // Generate the CRC-8 syndrom table for (int unsigned i=0; i<256; i+=1) begin sndrm = i; repeat (8) begin if (sndrm[7] == 1'b1) sndrm = (sndrm << 1) ^ 8'h07; else sndrm = sndrm << 1; end syndrom[i] = sndrm; end RtnCode = 8'h00; repeat (4) begin RtnCode = syndrom[RtnCode ^ hdr[31:24]]; hdr = hdr << 8; end RtnCode = RtnCode ^ 8'h55; return RtnCode; endfunction // // Rewriting and forwarding process // logic [0:NumTx-1] forward; typedef enum bit [0:1] {wait_rx_valid, wait_rx_not_valid, wait_tx_ready, wait_tx_not_ready } StateType; StateType SquatState; bit [0:NumTx-1] Txvalid; bit [0:NumTx-1] Txready; bit [0:NumTx-1] Txsel_in; bit [0:NumTx-1] Txsel_out; bit [0:NumRx-1] Rxvalid; bit [0:NumRx-1] Rxready; bit [0:NumRx-1] RoundRobin; ATMCellType [0:NumRx-1] RxATMcell; ATMCellType [0:NumTx-1] TxATMcell; generate for (TxIter=0; TxIter<NumTx; TxIter+=1) begin: GenTx assign Tx[TxIter].valid = Txvalid[TxIter]; assign Txready[TxIter] = Tx[TxIter].ready; assign Txsel_in[TxIter] = Tx[TxIter].selected; assign Tx[TxIter].selected = Txsel_out[TxIter]; assign Tx[TxIter].ATMcell = TxATMcell[TxIter]; end endgenerate generate for (RxIter=0; RxIter<NumRx; RxIter+=1) begin: GenRx assign Rxvalid[RxIter] = Rx[RxIter].valid; assign Rx[RxIter].ready = Rxready[RxIter]; assign RxATMcell[RxIter] = Rx[RxIter].ATMcell; end endgenerate ATMCellType ATMcell; always_ff @(posedge clk, posedge reset) begin: FSM bit breakVar; if (reset) begin: reset_logic Rxready <= '1; Txvalid <= '0; Txsel_out <= '0; SquatState <= wait_rx_valid; forward <= 0; RoundRobin = 1; end: reset_logic else begin: FSM_sequencer unique case (SquatState) wait_rx_valid: begin: rx_valid_state Rxready <= '1; breakVar = 1; for (int j=0; j<NumRx; j+=1) begin: loop1 for (int i=0; i<NumRx; i+=1) begin: loop2 if (Rxvalid[i] && RoundRobin[i] && breakVar) begin: match ATMcell <= RxATMcell[i]; Rxready[i] <= 0; SquatState <= wait_rx_not_valid; breakVar = 0; end: match end: loop2 if (breakVar) RoundRobin={RoundRobin[1:$bits(RoundRobin)-1], RoundRobin[0]}; end: loop1 end: rx_valid_state wait_rx_not_valid: begin: rx_not_valid_state if (ATMcell.uni.HEC != hec(ATMcell.Mem[0:3])) begin SquatState <= wait_rx_valid; `ifndef SYNTHESIS // synthesis ignores this code $write("Bad HEC: ATMcell.uni.HEC(0x%x) != ", ATMcell.uni.HEC); $display("ATMcell.Mem[0:3](0x%x)", hec(ATMcell.Mem[0:3])); `endif end else begin // Get the forward ports & new VPI {forward, ATMcell.nni.VPI} <= lut.read(ATMcell.uni.VPI); // Recompute the HEC ATMcell.nni.HEC <= hec(ATMcell.Mem[0:3]); SquatState <= wait_tx_ready; end end: rx_not_valid_state wait_tx_ready: begin: tx_valid_state if (forward) begin for (int i=0; i<NumTx; i+=1) begin if (forward[i] && Txready[i]) begin TxATMcell[i] <= ATMcell; Txvalid[i] <= 1; Txsel_out[i] <= 1; end end SquatState <= wait_tx_not_ready; end else begin SquatState <= wait_rx_valid; end end: tx_valid_state wait_tx_not_ready: begin: tx_not_valid_state for (int i=0; i<NumTx; i+=1) begin if (forward[i] && !Txready[i] && Txsel_in[i]) begin Txvalid[i] <= 0; Txsel_out[i] <= 0; forward[i] <= 0; end end if (forward) SquatState <= wait_tx_ready; else SquatState <= wait_rx_valid; end: tx_not_valid_state default: begin: unknown_state SquatState <= wait_rx_valid; `ifndef SYNTHESIS // synthesis ignores this code $display("Unknown condition"); $finish(); `endif end: unknown_state endcase end: FSM_sequencer end: FSMendmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -