📄 samples.c
字号:
/****************************************************************
File Name: samples.C
Author: Tian Zhang, CS Dept., Univ. of Wisconsin-Madison, 1995
Copyright(c) 1995 by Tian Zhang
All Rights Reserved
Permission to use, copy and modify this software must be granted
by the author and provided that the above copyright notice appear
in all relevant copies and that both that copyright notice and this
permission notice appear in all relevant supporting documentations.
Comments and additions may be sent the author at zhang@cs.wisc.edu.
******************************************************************/
#include "global.h"
#include "util.h"
#include "vector.h"
#include "rectangle.h"
#include "cfentry.h"
#include "cutil.h"
#include "parameter.h"
#include "status.h"
#include "cftree.h"
#include "buffer.h"
#include "samples.h"
Sample1::Sample1(int s, Stat *Stats) {
size=s;
cnt=0;
ptr=0;
CFS=new Entry[s];
for (int i=0; i<s; i++) CFS[i].Init(Stats->Dimension);
PrevA=PrevB=CurrA=CurrB=0.0;
}
Sample1::~Sample1() {
if (CFS) delete [] CFS;
}
void Sample1::AvgRRegression(Stat *Stats) {
double sumn=0.0, sumnn=0.0, sumnr=0.0, sumr=0.0;
if (cnt==0) {CurrA=-1;CurrB=-1;return;}
for (int i=0; i<cnt; i++) {
sumn += CFS[i].n*1.0;
sumnn += CFS[i].n*1.0*CFS[i].n*1.0;
sumr += CFS[i].Fitness(Stats->Ftype);
sumnr += CFS[i].n*CFS[i].Fitness(Stats->Ftype);
}
CurrA = (sumnr-sumn*sumr/cnt)/(sumnn-sumn*sumn/cnt);
CurrB = sumr/cnt-CurrA*sumn/cnt;
}
void Sample1::Take_Sample1(Stat *Stats)
{
Entry tmpent1, tmpent2;
tmpent1.Init(Stats->Dimension);
tmpent2.Init(Stats->Dimension);
PrevA=CurrA;
PrevB=CurrB;
Stats->NewRoot->CF(tmpent1);
Stats->SplitBuffer->CF(tmpent2);
CFS[ptr].Add(tmpent1,tmpent2);
ptr=(ptr+1)%size;
cnt++;
if (cnt>size) cnt=size;
AvgRRegression(Stats);
}
Sample2::Sample2(int s) {
size=s;
cnt=0;
ptr=0;
NS = new int[s];
FTS = new double[s];
PrevA=PrevB=CurrA=CurrB=0.0;
}
Sample2::~Sample2() {
if (NS) delete [] NS;
if (FTS) delete [] FTS;
}
void Sample2::FtDRegression(Stat *Stats) {
double fti, sumn=0.0, sumnn=0.0, sumnftd=0.0, sumftd=0.0;
int i,ni;
short flagA=TRUE, flagB=TRUE;
ni = NS[0];
fti = FTS[0];
for (i=1;i<cnt;i++)
if (ni!=NS[i]) {flagA=FALSE; break;}
for (i=1;i<cnt;i++)
if (fti!=FTS[i]) {flagB=FALSE; break;}
// Ft2>Ft1 but N2=N1, so Ft's are too small
if (flagA==TRUE && flagB==FALSE) {
CurrA = -1; CurrB = -1; return;
}
for (i=0; i<cnt; i++) {
sumn += NS[i]*1.0;
sumnn += NS[i]*1.0*NS[i]*1.0;
sumftd += pow(FTS[i],Stats->Dimension);
sumnftd += NS[i]*pow(FTS[i],Stats->Dimension);
}
CurrA = (sumnftd-sumn*sumftd/cnt)/(sumnn-sumn*sumn/cnt);
CurrB = sumftd/cnt-CurrA*sumn/cnt;
}
void Sample2::Take_Sample2(Stat *Stats) {
PrevA=CurrA;
PrevB=CurrB;
NS[ptr]=Stats->CurrDataCnt;
FTS[ptr]=Stats->CurFt;
ptr=(ptr+1)%size;
cnt++;
if (cnt>size) cnt=size;
FtDRegression(Stats);
}
Sample3::Sample3(int s) {
size=s;
cnt=0;
ptr=0;
logR=new double[s];
logNR=new double[s];
}
Sample3::~Sample3() {
delete [] logR;
delete [] logNR;
}
void Sample3::Take_Sample3(Stat *Stats)
{
logR[ptr] = log(sqrt(Stats->CurFt));
logNR[ptr] = log(1.0*Stats->CurrEntryCnt);
ptr=(ptr+1)%size;
cnt++;
if (cnt>size) cnt=size;
}
double Sample3::Regression(const double n)
{
double A, B, sumlogR=0,sumlogRlogR=0,sumlogRlogNR=0,sumlogNR=0;
for (int i=0; i<cnt; i++) {
sumlogR+=logR[i];
sumlogRlogR+=logR[i]*logR[i];
sumlogNR+=logNR[i];
sumlogRlogNR+=logR[i]*logNR[i];
}
A=(sumlogRlogNR-sumlogR*sumlogNR/cnt)/(sumlogRlogR-sumlogR*sumlogR/cnt);
B=sumlogNR/cnt-A*sumlogR/cnt;
return exp((log(n)-B)/A)*exp((log(n)-B)/A);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -