📄 post_norm_addsub.vhd
字号:
-------------------------------------------------------------------------------
--
-- Project: <Floating Point Unit Core>
--
-- Description: post-normalization entity for the addition/subtraction unit
-------------------------------------------------------------------------------
--
-- 100101011010011100100
-- 110000111011100100000
-- 100000111011000101101
-- 100010111100101111001
-- 110000111011101101001
-- 010000001011101001010
-- 110100111001001100001
-- 110111010000001100111
-- 110110111110001011101
-- 101110110010111101000
-- 100000010111000000000
--
-- Author: Jidan Al-eryani
-- E-mail: jidan@gmx.net
--
-- Copyright (C) 2006
--
-- This source file may be used and distributed without
-- restriction provided that this copyright statement is not
-- removed from the file and that any derivative work contains
-- the original copyright notice and the associated disclaimer.
--
-- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
-- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
-- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
-- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--
library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_misc.all;
library work;
use work.fpupack.all;
entity post_norm_addsub is
port(
clk_i : in std_logic;
opa_i : in std_logic_vector(FP_WIDTH-1 downto 0);
opb_i : in std_logic_vector(FP_WIDTH-1 downto 0);
fract_28_i : in std_logic_vector(FRAC_WIDTH+4 downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)
exp_i : in std_logic_vector(EXP_WIDTH-1 downto 0);
sign_i : in std_logic;
fpu_op_i : in std_logic;
rmode_i : in std_logic_vector(1 downto 0);
output_o : out std_logic_vector(FP_WIDTH-1 downto 0);
ine_o : out std_logic
);
end post_norm_addsub;
architecture rtl of post_norm_addsub is
signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0);
signal s_fract_28_i : std_logic_vector(FRAC_WIDTH+4 downto 0);
signal s_exp_i : std_logic_vector(EXP_WIDTH-1 downto 0);
signal s_sign_i : std_logic;
signal s_fpu_op_i : std_logic;
signal s_rmode_i : std_logic_vector(1 downto 0);
signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0);
signal s_ine_o : std_logic;
signal s_overflow : std_logic;
signal s_zeros, s_shr1, s_shl1 : std_logic_vector(5 downto 0);
signal s_shr2, s_carry : std_logic;
signal s_exp10: std_logic_vector(9 downto 0);
signal s_expo9_1, s_expo9_2, s_expo9_3: std_logic_vector(EXP_WIDTH downto 0);
signal s_fracto28_1, s_fracto28_2, s_fracto28_rnd : std_logic_vector(FRAC_WIDTH+4 downto 0);
signal s_roundup : std_logic;
signal s_sticky : std_logic;
signal s_zero_fract : std_logic;
signal s_lost : std_logic;
signal s_infa, s_infb : std_logic;
signal s_nan_in, s_nan_op, s_nan_a, s_nan_b, s_nan_sign : std_logic;
begin
-- Input Register
--process(clk_i)
--begin
-- if rising_edge(clk_i) then
s_opa_i <= opa_i;
s_opb_i <= opb_i;
s_fract_28_i <= fract_28_i;
s_exp_i <= exp_i;
s_sign_i <= sign_i;
s_fpu_op_i <= fpu_op_i;
s_rmode_i <= rmode_i;
-- end if;
--end process;
-- Output Register
process(clk_i)
begin
if rising_edge(clk_i) then
output_o <= s_output_o;
ine_o <= s_ine_o;
end if;
end process;
--*** Stage 1 ****
-- figure out the output exponent and howmuch the fraction has to be shiftd right/left
s_carry <= s_fract_28_i(27);
s_zeros <= count_l_zeros(s_fract_28_i(26 downto 0)) when s_fract_28_i(27)='0' else "000000";
s_exp10 <= ("00"&s_exp_i) + ("000000000"&s_carry) - ("0000"&s_zeros); -- negative flag & large flag & exp
process(clk_i)
begin
if rising_edge(clk_i) then
if s_exp10(9)='1' or s_exp10="0000000000" then
s_shr1 <= (others =>'0');
if or_reduce(s_exp_i)/='0' then
s_shl1 <= s_exp_i(5 downto 0) - "000001";
else
s_shl1 <= "000000";
end if;
s_expo9_1 <= "000000001";
elsif s_exp10(8)='1' then
s_shr1 <= (others =>'0');
s_shl1 <= (others =>'0');
s_expo9_1 <= "011111111";
else
s_shr1 <= ("00000"&s_carry);
s_shl1 <= s_zeros;
s_expo9_1 <= s_exp10(8 downto 0);
end if;
end if;
end process;
---
-- *** Stage 2 ***
-- Shifting the fraction and rounding
process(clk_i)
begin
if rising_edge(clk_i) then
if s_shr1 /= "000000" then
s_fracto28_1 <= shr(s_fract_28_i, s_shr1);
else
s_fracto28_1 <= shl(s_fract_28_i, s_shl1);
end if;
end if;
end process;
s_expo9_2 <= s_expo9_1 - "000000001" when s_fracto28_1(27 downto 26)="00" else s_expo9_1;
-- round
s_sticky <='1' when s_fracto28_1(0)='1' or (s_fract_28_i(0) and s_fract_28_i(27))='1' else '0'; --check last bit, before and after right-shift
s_roundup <= s_fracto28_1(2) and ((s_fracto28_1(1) or s_sticky)or s_fracto28_1(3)) when s_rmode_i="00" else -- round to nearset even
(s_fracto28_1(2) or s_fracto28_1(1) or s_sticky) and (not s_sign_i) when s_rmode_i="10" else -- round up
(s_fracto28_1(2) or s_fracto28_1(1) or s_sticky) and (s_sign_i) when s_rmode_i="11" else -- round down
'0'; -- round to zero(truncate = no rounding)
s_fracto28_rnd <= s_fracto28_1 + "0000000000000000000000001000" when s_roundup='1' else s_fracto28_1;
-- ***Stage 3***
-- right-shift after rounding (if necessary)
s_shr2 <= s_fracto28_rnd(27);
s_expo9_3 <= s_expo9_2 + "000000001" when s_shr2='1' and s_expo9_2 /= "011111111" else s_expo9_2;
s_fracto28_2 <= ("0"&s_fracto28_rnd(27 downto 1)) when s_shr2='1' else s_fracto28_rnd;
-----
s_infa <= '1' when s_opa_i(30 downto 23)="11111111" else '0';
s_infb <= '1' when s_opb_i(30 downto 23)="11111111" else '0';
s_nan_a <= '1' when (s_infa='1' and or_reduce (s_opa_i(22 downto 0))='1') else '0';
s_nan_b <= '1' when (s_infb='1' and or_reduce (s_opb_i(22 downto 0))='1') else '0';
s_nan_in <= '1' when s_nan_a='1' or s_nan_b='1' else '0';
s_nan_op <= '1' when (s_infa and s_infb)='1' and (s_opa_i(31) xor (s_fpu_op_i xor s_opb_i(31)) )='1' else '0'; -- inf-inf=Nan
s_nan_sign <= s_sign_i when (s_nan_a and s_nan_b)='1' else
s_opa_i(31) when s_nan_a='1' else
s_opb_i(31);
-- check if result is inexact;
s_lost <= (s_shr1(0) and s_fract_28_i(0)) or (s_shr2 and s_fracto28_rnd(0)) or or_reduce(s_fracto28_2(2 downto 0));
s_ine_o <= '1' when (s_lost or s_overflow)='1' and (s_infa or s_infb)='0' else '0';
s_overflow <='1' when s_expo9_3="011111111" and (s_infa or s_infb)='0' else '0';
s_zero_fract <= '1' when s_zeros=27 and s_fract_28_i(27)='0' else '0'; -- '1' if fraction result is zero
process(s_sign_i, s_expo9_3, s_fracto28_2, s_nan_in, s_nan_op, s_nan_sign, s_infa, s_infb, s_overflow, s_zero_fract)
begin
if (s_nan_in or s_nan_op)='1' then
s_output_o <= s_nan_sign & QNAN;
elsif (s_infa or s_infb)='1' or s_overflow='1' then
s_output_o <= s_sign_i & INF;
elsif s_zero_fract='1' then
s_output_o <= s_sign_i & ZERO_VECTOR;
else
s_output_o <= s_sign_i & s_expo9_3(7 downto 0) & s_fracto28_2(25 downto 3);
end if;
end process;
end rtl;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -