📄 ekf.m
字号:
function [xhat_data,Pmat]=ekf(kalmfilex,kalmfiley,linfile,xbar,...
P0,q,r,u,y,timeidx,optpar)
% EKF
% This function is an implementation of the conventional
% extended Kalman filter (EKF).
% The filter estimates the states for nonlinear systems written in
% the general form:
% x(k+1) = f[x(k),u(k),v(k)]
% y(k) = g[x(k),w(k)]
%
% Call: [xhat,Pmat]=ekf(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar)
%
% Input:
% xfunc - Function containing the state equations.
% yfunc - Function containing the output equations.
% linfunc - Function containing linearization procedure.
% x0 - Initial state vector.
% P0 - Initial covariance matrix (symmetric, nonnegative definite).
% q,r - Covariance matrices for v and w, respectively.
% u - Input signal. Dimension is [samples x inputs].
% Use [] if there are no inputs.
% y - Output signal. Dimension is [observations x outputs].
% tidx - Vector containing time stamps (in samples) for the
% observations in y.
% optpar - Data structure containing optional parameters:
% .init : Initial parameters for 'xfile', 'yfile', and
% 'linfile' (use an arbitrary format).
%
% Output:
% xhat - State estimates. Dimension is [samples+1 x states].
% Pmat - Matrix where each row contains the upper triangular elements
% of the covariance matrix estimates. The dimension is
% [samples+1 x 0.5*states*(states+1)]. The individual covariance
% matrices can later be extracted with MAT2COV.
%
% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc'
% containing state update, output equation, and linearization. The
% function containing the state update should have the header
% (the function name is arbitrary):
% function x=my_xfile(x,u,v)
%
% the function containing the output equation must have the header
% function y=my_yfile(x,w)
%
% while the function containing the linearization must have the header
% function [M,N]=my_linfile(x,u,vw,flag)
% flag=0: Linearization of the state equation
% flag=1: Linerization of the output equation.
%
% In all three cases, an initialization of constant parameters can be
% made using the parameter 'optpar.init'. This parameter is passed through
% x if the functions are called with only one parameter.
%
% Written by Magnus Norgaard
% LastEditDate: Nov. 9, 2001
% >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<
if isempty(u), % No inputs
nu = 0; samples = timeidx(end); uk1 = [];
else
[samples,nu] = size(u); % # of samples and inputs
end
ny = size(y,2); % # of outputs
nx = size(P0,1); % # of states
nv = size(q,1); % # of process noise sources
nw = size(r,1); % # of measurement noise sources
if isempty(xbar), % Set to x0=0 if not specified
xbar=zeros(nx,1);
elseif length(xbar)~=nx,
error('Dimension mismatch between x0 and P0');
end
if size(y,1)~=size(timeidx,1)
error('Dimension mismatch between y and timeidx');
end
Pxbar = P0; % A priori estimate = initial covariance
xhat_data = zeros(samples+1,nx); % Matrix for storing state estimates
Pmat = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices
pidx = find(tril(reshape(1:nx*nx,nx,nx))); % Index in P
yidx = 1; % Index into y-vector
% ----- Initialize state+output equations and linearization -----
if nargin<11, % No optional parameters passed
optpar = [];
end
if isfield(optpar,'init') % Parameters for m-functions
initpar = optpar.init;
else
initpar = [];
end
vmean = zeros(nv,1); % Mean of process noise
wmean = zeros(nw,1); % Mean of measurement noise
feval(kalmfilex,initpar); % Initialize state equation
feval(kalmfiley,initpar); % Initialize output equation
feval(linfile,initpar); % Initialize linearization
counter = 0; % Counts the progress of the filtering
waithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
for k=0:samples,
% --- Measurement update (a posteriori update) ---
ybar = feval(kalmfiley,xbar,wmean);
if (k<=timeidx(end) & timeidx(yidx)==k),
[C,G] = feval(linfile,xbar,[],wmean,1); % Linearization
if isempty(G), % Kalman gain
K = Pxbar*C'/(C*Pxbar*C'+r); % Noise enters directly
else
K = Pxbar*C'/(C*Pxbar*C'+G*r*G');% General update
end
Px = Pxbar-K*C*Pxbar; % A posteriori covariance
xhat = xbar + K*(y(yidx,:)'-ybar); % State estimate
yidx = yidx + 1; % Update index in time vector
% no observations available at this sampling time
else
xhat = xbar; % Copy a priori state estimate
Px = Pxbar; % Copy a priori covariance factor
end
% --- Time update (a'priori update) of state and covariance ---
if k<samples,
if nu>0 uk1 = u(k+1,:)'; end
xbar=feval(kalmfilex,xhat,uk1,vmean); % State update
[A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization
if isempty(F), % Covariance update
Pxbar = A*Px*A' + q; % Noise enters directly
else
Pxbar = A*Px*A' + F*q*F'; % General update
end
end
% --- Store results ---
xhat_data(k+1,:) = xhat';
Pmat(k+1,:) = Px(pidx)';
% --- How much longer? ---
if (counter+0.01<= k/samples),
counter = k/samples;
waitbar(k/samples,waithandle);
end
end
close(waithandle);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -