⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 the kalman filter.htm

📁 卡尔曼滤波文章
💻 HTM
📖 第 1 页 / 共 2 页
字号:
          Center</A>. 
          <LI>On November 16, 2005, Kalman was awarded Columbia Engineering 
          School Alumni Association抯 <B>Egleston Medal</B> for <I>Distinguished 
          Engineering Achievement</I>. See <A 
          href="http://www.columbia.edu/cu/news/05/11/elgeston_medal.html">online 
          article</A> or <A 
          href="http://www.cs.unc.edu/~welch/kalman/media/pdf/Egelston_Medal_20051116.pdf">local 
          copy</A>. 
          <LI>On February 19, 2008, Kalman will be awared the <A 
          href="http://www.nae.edu/nae/awardscom.nsf/weblinks/NAEW-4NHML8?OpenDocument">Charles 
          Stark Draper Prize</A> for "the development and dissemination of the 
          optimal digital technique (known as the Kalman Filter) that is 
          pervasively used to control a vast array of consumer, health, 
          commercial and defense products." More information is <A 
          href="http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=01022008">available 
          here</A>. (See also this <A 
          href="http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman_Draper_2008.pdf">archived 
          copy of the press release</A>.) </LI></UL>
        <LI><A href="http://www.cs.unc.edu/~welch/kalman/kalmanPaper.html">His 
        seminal (1960) paper</A>. </LI></UL></TD></TR></TBODY></TABLE><A 
name=Anchor-48213></A>
<TABLE cellSpacing=4 cellPadding=0 border=0>
  <TBODY>
  <TR>
    <TD vAlign=top width=84><IMG height=68 
      src="The Kalman Filter.files/kf_book.gif" width=84 align=top border=0></TD>
    <TD vAlign=center>
      <H2>Printed Reference Material</H2></TD></TR>
  <TR>
    <TD vAlign=top colSpan=2>
      <UL>
        <LI>For beginners, we highly recommend reading <A 
        href="http://www.cs.unc.edu/~welch/kalman/maybeck.html">Chapter 1 of 
        this book</A> by <A href="http://en.afit.edu/maybeck/">Peter S. 
        Maybeck</A> on the subjects of stochastic models, estimation, and 
        control. Although the remaining chapters may appear daunting, the book 
        is thorough and complete. 
        <LI>For a somewhat more advanced presentation, we have written "<A 
        href="http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html">An 
        Introduction to the Kalman Filter</A>" (also <A 
        href="http://yaoxuchen.googlepages.com/kalman">available in Chinese</A>) 
        and a more substantial <A 
        href="http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf">course 
        pack (booklet)</A> for our <A 
        href="http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html">tutorial 
        on the Kalman filter</A> presented at <A 
        href="http://www.siggraph.org/s2001/">ACM SIGGRAPH 2001</A>. (Please 
        read the <A href="http://info.acm.org/pubs/toc/CRnotice.html">ACM 
        Copyright Notice</A> for the latter.) 
        <LI>In addition, here are several other <A 
        href="http://www.cs.unc.edu/~welch/kalman/kalmanBooks.html">Kalman 
        filter books</A>, and several of the sites below provide reading lists. 
        <LI>Kalman's <A 
        href="http://www.cs.unc.edu/~welch/kalman/kalmanPaper.html">seminal 
        paper (1960)</A>. 
        <LI>Sorenson's <A 
        href="http://www.cs.unc.edu/~welch/kalman/sorensonPaper.html">"Gauss to 
        Kalman" article (1970)</A>. </LI></UL></TD></TR></TBODY></TABLE><A 
name=Anchor-49575></A>
<TABLE cellSpacing=4 cellPadding=0 border=0>
  <TBODY>
  <TR>
    <TD vAlign=top width=84><A 
      href="http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html"><IMG 
      height=80 src="The Kalman Filter.files/kf_class.gif" width=84 
    border=0></A></TD>
    <TD vAlign=center>
      <H2><A name=Anchor-Courses-49575></A>Courses</H2></TD></TR>
  <TR>
    <TD vAlign=top colSpan=2>
      <UL>
        <LI>January 19-23, 2009, Fullerton, California, USA
        <UL>
          <LI>"<A href="http://kalmanfilteringgpsins.com/register">Application 
          of Kalman Filtering to GPS, INS, &amp; Navigation</A>"<BR><A 
          href="http://www.ecs.fullerton.edu/~mgrewal/">Dr. M. S. Grewal</A>, 
          California State University, Fullerton </LI></UL>
        <LI>At <A href="http://www.siggraph.org/s2001/">ACM SIGGRAPH 2001</A> we 
        presented a <A 
        href="http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html">tutorial 
        on the Kalman filter</A>. (Please read the <A 
        href="http://info.acm.org/pubs/toc/CRnotice.html">ACM Copyright 
        Notice</A>.) </LI></UL>
      <UL></UL></TD></TR>
  <TR>
    <TD vAlign=top></TD>
    <TD vAlign=top></TD></TR></TBODY></TABLE><A name=Anchor-37516></A>
<TABLE cellSpacing=4 cellPadding=0 border=0>
  <TBODY>
  <TR>
    <TD vAlign=top width=84><IMG height=84 
      src="The Kalman Filter.files/kf_www.gif" width=84 border=0></TD>
    <TD vAlign=center>
      <H2>Other Sites and Electronic Reference</H2></TD></TR>
  <TR>
    <TD vAlign=top colSpan=2>
      <H4>Local Material</H4>
      <UL>
        <LI>"<A href="http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html">An 
        Introduction to the Kalman Filter</A>" by <A 
        href="http://www.cs.unc.edu/~welch">Greg Welch</A> and <A 
        href="http://www.cs.unc.edu/~gb">Gary Bishop</A>. The article has also 
        been <A href="http://yaoxuchen.googlepages.com/kalman">translated into 
        Chinese</A> by Xuchen Yao, a student at Institute of Acoustics, the <A 
        href="http://english.cas.ac.cn/Eng2003/page/home.asp">Chinese Academy of 
        Sciences</A> (January, 2007. See also the <A 
        href="http://www.cs.unc.edu/~welch/kalman/media/pdf/kalman_intro_chinese.pdf">local 
        archived copy</A>.). 
        <LI>Course notes from our <A 
        href="http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html">tutorial 
        on the Kalman filter</A> presented at <A 
        href="http://www.siggraph.org/s2001/">ACM SIGGRAPH 2001</A>. (Please 
        read the <A href="http://info.acm.org/pubs/toc/CRnotice.html">ACM 
        Copyright Notice</A>.) 
        <LI><A 
        href="http://www.cs.unc.edu/~welch/media/pdf/kalmanIntroSlides.pdf">Slides</A> 
        from an older introductory talk by <A 
        href="http://www.cs.unc.edu/~welch">Greg Welch</A> and <A 
        href="http://www.cs.unc.edu/~gb">Gary Bishop</A>. 
        <LI>Our very own Java-based <A 
        href="http://www.cs.unc.edu/~welch/kalman/kftool/index.html">Kalman 
        Filter Learning Tool</A>. </LI></UL>
      <H4>External Material</H4>
      <UL>
        <LI><A href="http://www.wikipedia.org/">Wikipedia</A> has an <A 
        href="http://en.wikipedia.org/wiki/Kalman_filter">excellent article on 
        the Kalman filter</A>. 
        <LI>In a 1997 Innovation column of <A 
        href="http://www.gpsworld.com/">GPS World</A>, Larry J. Levy wrote a 
        very nice introduction to the Kalman filter titled "<A 
        href="http://www.cs.unc.edu/~welch/kalman/Levy1997/index.html">The 
        Kalman Filter: Navigation's Integration Workhorse</A>." (Also available 
        as <A 
        href="http://www.cs.unc.edu/~welch/kalman/Levy1997/Levy1997_KFWorkhorse.pdf">PDF 
        file</A>.) Levy provides some historical perspective, a non-mathematical 
        explanation, and of course a mathematical explanation with examples. 
        <LI><A href="http://www.ai.mit.edu/~murphyk/">Kevin Murphy</A>, a 
        postdoc in the <A href="http://www.ai.mit.edu/">MIT AI Lab</A>, has a 
        nice <A 
        href="http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html">Kalman 
        filter web page</A>. There he provides <A 
        href="http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman_download.html">several 
        MatLab toolboxes</A>, including a Kalman filter toolbox. (<A 
        href="http://www.mathworks.com/products/prodoverview.shtml">MatLab</A> 
        is a product of <A href="http://www.mathworks.com/">The MathWorks</A>.) 
        <LI><A href="http://www.cse.ogi.edu/~rudmerwe/">Rudolph van der 
        Merwe</A> maintains a very nice web site on signal processing research 
        including work on <A 
        href="http://cslu.cse.ogi.edu/nsel/research/ukf.html">Unscented Kalman 
        Filters</A>. (The idea for the UKF was originally introduced by Simon 
        Julier and Jeff Uhlmann.) Their site contains papers and a <A 
        href="http://choosh.csee.ogi.edu/rebel/">MatLab toolkit called ReBEL</A> 
        which contains functions and scripts for the Kalman filter, particle 
        filters (in general), and the Unscented Kalman Filter. (<A 
        href="http://www.mathworks.com/products/prodoverview.shtml">MatLab</A> 
        is a product of <A href="http://www.mathworks.com/">The MathWorks</A>.) 
        <A href="http://cslu.cse.ogi.edu/publications/ps/UPF_CSLU_talk.pdf">Here 
        are the slides</A> from a June 2002 talk Rudolph gave at a <A 
        href="http://cslu.cse.ogi.edu/">CSLU</A> weekly seminar. 
        <LI>"<A 
        href="http://www.cs.unc.edu/~welch/kalman/siam_cipra.html">Engineers 
        Look to Kalman Filtering for Guidance</A>," an article by Barry Cipra, 
        SIAM News, Vol. 26, No. 5, August 1993. 
        <LI><A 
        href="http://www.innovatia.com/software/papers/kalman.htm">Innovatia 
        Software's Kalman Filtering Page</A>, provided by <A 
        href="mailto:dansimon@innovatia.com">Dr. Dan Simon</A>. 
        <LI><A href="http://home%20.earthlink.net/~pdjoseph">Peter D. Joseph's 
        Home Page</A> containing material on Kalman filters. 
        <LI>Intel's <A 
        href="http://www.intel.com/research/mrl/research/opencv/index.htm">OpenCV</A> 
        Reference Manual includes some introductory Kalman filter prose and 
        library functions. 
        <DIV></DIV>
        <LI><A href="http://r.w.r.darling.googlepages.com/">R. W. R. Darling</A> 
        has a very nice online survey of nonlinear filtering. (The <A 
        href="http://www.nonlinearfiltering.webhop.net/">original site</A> does 
        not seem to work any more, but the survey <A 
        href="http://web.archive.org/web/20080214024542/http://www.nonlinearfiltering.webhop.net/">is 
        accessible via "The Wayback Machine"</A>.)
        <LI><A href="http://www.omatrix.com/contact.html">Harmonic Software</A> 
        sells a <A href="http://www.omatrix.com/kbf.html">Kalman Filter 
        Interface Pack (KBF)</A> for their <A 
        href="http://www.omatrix.com/">O-Matrix</A> product. KBF is a GUI-based 
        environment for graphically designing, building, and analyzing Kalman 
        filters using the Kalman filter functions available in O-Matrix. 
        <LI>Jean-Philippe Drecourt, a PhD student working on the <A 
        href="http://projects.dhi.dk/daihm/">DHI Data Assimilation in 
        Hydrological and Hydrodynamic Models site</A> project, wrote a <A 
        href="http://projects.dhi.dk/daihm/Files/KFlitreview.pdf">literature 
        review on Kalman filtering</A> with references to hydrological 
        modelling. He reviews the Kalman filter itself, and some of the most 
        important&nbsp;suboptimal schemes. 
        <LI>Andre Adrian, a Senior Engineer at <A 
        href="http://www.dfs.de/dfs/internet/english/index.html">DFS in 
        Germany</A>, used the Kalman filter (and variations) to create a central 
        tracker for the german air traffic control. He has provided <A 
        href="http://www.andreadrian.de/kalman_filter/">a few articles here</A>. 

        <LI><A href="mailto:rrrb@sureste.com">Ruben R. Raygosa</A> has 
        contributed a <A 
        href="http://www.cs.unc.edu/~welch/kalman/media/misc/RAYGOSA_KF_tutorial.zip">Spanish 
        tutorial for the Kalman filter</A>. 
        <LI>Vladimir Tislenko <A 
        href="http://www.cs.unc.edu/~welch/kalman/tislenko.html">wrote to tell 
        us about two Kalman rivers connected to the Irtysh river in Siberia</A>. 
        </LI></UL></TD></TR></TBODY></TABLE><A name=Anchor-23522></A>
<TABLE cellSpacing=4 cellPadding=0 border=0>
  <TBODY>
  <TR>
    <TD vAlign=top width=84><IMG height=84 
      src="The Kalman Filter.files/kf_drive.gif" width=84 border=0></TD>
    <TD vAlign=center>
      <H2>Software</H2></TD></TR>
  <TR>
    <TD vAlign=top colSpan=2>
      <UL>
        <LI>A <A 
        href="http://www.cs.unc.edu/~welch/kalman/media/misc/kftool_matlab.zip">zip 
        file</A> of some MatLab source code for a prototype of our Java-based <A 
        href="http://www.cs.unc.edu/~welch/kalman/kftool/index.html">Kalman 
        Filter Learning Tool.</A> 
        <LI><A href="http://sourceforge.net/projects/opencvlibrary/">OpenCV</A> 
        includes some Kalman Filter functions, and the Reference Manual includes 
        some introductory prose. (The prose is quite similar to our <A 
        href="http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html">introductory 
        paper</A>.) The entire library can be <A 
        href="http://sourceforge.net/projects/opencvlibrary/">downloaded</A> 
        after agreeing to their <A 
        href="http://www.intel.com/research/mrl/research/opencv/license.htm">license</A>. 
        The Reference Manual is in the opencv-doc package. 
        <LI><A 
        href="http://www.acfr.usyd.edu.au/people/technical/mstevens/">Michael 
        Stevens</A> (a Senior Research Engineer at the <A 
        href="http://www.acfr.usyd.edu.au/">Australian Centre for Field 
        Robotics</A>) has developed a nice <A 
        href="http://bayesclasses.sourceforge.net/Bayes++.html">library of C++ 
        Bayesian Filtering Classes</A>. The classes represent and implement a 
        wide variety of numerical estimation algorithms for Bayesian/Kalman 
        Filtering. The classes provide tested and consistent numerical methods 
        and the class hierarchy explicitly represents the variety of filtering 
        algorithms and model types. 
        <LI><A href="http://www.cs.berkeley.edu/~murphyk/">Kevin Murphy</A> (see 
        above) provides <A 
        href="http://www.cs.berkeley.edu/~murphyk/Bayes/request.html">several 
        MatLab toolboxes</A>, including a Kalman filter toolbox. (<A 
        href="http://www.mathworks.com/products/prodoverview.shtml">MatLab</A> 
        is a product of <A href="http://www.mathworks.com/">The MathWorks</A>.) 
        <LI><SPAN class=ds2><A href="http://www.awblocker.com/">Alex Blocker</A> 
        at Boston University has developed and made available some Matlab tools 
        for Kalman filtering, smoothing, and estimation. (See <A 
        href="http://www.awblocker.com/">his web site</A> for notes, 
        instructions, and a link to the tools.) The tools are licensed under <A 
        href="http://www.gnu.org/licenses/lgpl.html">LGPL</A> 3.0. He says that 
        the learning algorithm he uses is similar to Kevin Murphy's, but is 
        extended to the case of a controlled system. He </SPAN><SPAN 
        class=ds2>includes a technical note on this algorithm and its 
        use.</SPAN> 
        <LI><A href="http://www.lce.hut.fi/~ssarkka/">Simo S鋜kk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -