📄 ekf_predict1.m
字号:
%EKF_PREDICT1 1st order Extended Kalman Filter prediction step
%
% Syntax:
% [M,P] = EKF_PREDICT1(M,P,[A,Q,a,W,param])
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% a - Mean prediction E[a(x[k-1],q=0)] as vector,
% inline function, function handle or name
% of function in form a(x,param) (optional, default A(x)*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,param) (optional, default identity)
% param - Parameters of a (optional, default empty)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
%
% Description:
% Perform Extended Kalman Filter prediction step.
%
% See also:
% EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,
% LTI_DISC, KF_PREDICT, KF_UPDATE
% Copyright (C) 2002-2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -