📄 ekf_update1.m
字号:
%EKF_UPDATE1 1st order Extended Kalman Filter update step%% Syntax:% [M,P,K,MU,S,LH] = EKF_UPDATE1(M,P,Y,H,R,[h,V,param])%% In:% M - Nx1 mean state estimate after prediction step% P - NxN state covariance after prediction step% Y - Dx1 measurement vector.% H - Derivative of h() with respect to state as matrix,% inline function, function handle or name% of function in form H(x,param)% R - Measurement noise covariance.% h - Mean prediction (innovation) as vector,% inline function, function handle or name% of function in form h(x,param). (optional, default H(x)*X)% V - Derivative of h() with respect to noise as matrix,% inline function, function handle or name% of function in form V(x,param). (optional, default identity)% param - Parameters of h (optional, default empty)%% Out:% M - Updated state mean% P - Updated state covariance% K - Computed Kalman gain% MU - Predictive mean of Y% S - Predictive covariance of Y% LH - Predictive probability (likelihood) of measurement.% % Description:% Extended Kalman Filter measurement update step.% EKF model is%% y[k] = h(x[k],r), r ~ N(0,R)%% See also:% EKF_PREDICT1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,% LTI_DISC, KF_UPDATE, KF_PREDICT% Copyright (C) 2002-2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -