📄 small_2c35.vhd
字号:
led_pio_s1_waits_for_write <= Vector_To_Std_Logic(((std_logic_vector'("0000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(led_pio_s1_in_a_write_cycle))) AND std_logic_vector'("00000000000000000000000000000000")));
--led_pio_s1_in_a_write_cycle assignment, which is an e_assign
led_pio_s1_in_a_write_cycle <= internal_cpu_data_master_granted_led_pio_s1 AND cpu_data_master_write;
--in_a_write_cycle assignment, which is an e_mux
in_a_write_cycle <= led_pio_s1_in_a_write_cycle;
wait_for_led_pio_s1_counter <= std_logic'('0');
--led_pio_s1_pretend_byte_enable byte enable port mux, which is an e_mux
led_pio_s1_pretend_byte_enable <= Vector_To_Std_Logic(A_WE_StdLogicVector((std_logic'((internal_cpu_data_master_granted_led_pio_s1)) = '1'), (std_logic_vector'("0000000000000000000000000000") & (cpu_data_master_byteenable)), -SIGNED(std_logic_vector'("00000000000000000000000000000001"))));
--vhdl renameroo for output signals
cpu_data_master_granted_led_pio_s1 <= internal_cpu_data_master_granted_led_pio_s1;
--vhdl renameroo for output signals
cpu_data_master_qualified_request_led_pio_s1 <= internal_cpu_data_master_qualified_request_led_pio_s1;
--vhdl renameroo for output signals
cpu_data_master_requests_led_pio_s1 <= internal_cpu_data_master_requests_led_pio_s1;
end europa;
library altera_vhdl_support;
use altera_vhdl_support.altera_vhdl_support_lib.all;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library std;
use std.textio.all;
entity onchip_ram_s1_arbitrator is
port (
-- inputs:
signal clk : IN STD_LOGIC;
signal cpu_data_master_address_to_slave : IN STD_LOGIC_VECTOR (14 DOWNTO 0);
signal cpu_data_master_byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
signal cpu_data_master_read : IN STD_LOGIC;
signal cpu_data_master_waitrequest : IN STD_LOGIC;
signal cpu_data_master_write : IN STD_LOGIC;
signal cpu_data_master_writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal cpu_instruction_master_address_to_slave : IN STD_LOGIC_VECTOR (10 DOWNTO 0);
signal cpu_instruction_master_read : IN STD_LOGIC;
signal onchip_ram_s1_readdata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal reset_n : IN STD_LOGIC;
-- outputs:
signal cpu_data_master_granted_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_data_master_qualified_request_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_data_master_read_data_valid_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_data_master_requests_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_instruction_master_granted_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_instruction_master_qualified_request_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_instruction_master_read_data_valid_onchip_ram_s1 : OUT STD_LOGIC;
signal cpu_instruction_master_requests_onchip_ram_s1 : OUT STD_LOGIC;
signal d1_onchip_ram_s1_end_xfer : OUT STD_LOGIC;
signal onchip_ram_s1_address : OUT STD_LOGIC_VECTOR (8 DOWNTO 0);
signal onchip_ram_s1_byteenable : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
signal onchip_ram_s1_chipselect : OUT STD_LOGIC;
signal onchip_ram_s1_clken : OUT STD_LOGIC;
signal onchip_ram_s1_readdata_from_sa : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
signal onchip_ram_s1_write : OUT STD_LOGIC;
signal onchip_ram_s1_writedata : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
signal registered_cpu_data_master_read_data_valid_onchip_ram_s1 : OUT STD_LOGIC
);
attribute auto_dissolve : boolean;
attribute auto_dissolve of onchip_ram_s1_arbitrator : entity is FALSE;
end entity onchip_ram_s1_arbitrator;
architecture europa of onchip_ram_s1_arbitrator is
signal cpu_data_master_arbiterlock : STD_LOGIC;
signal cpu_data_master_continuerequest : STD_LOGIC;
signal cpu_data_master_read_data_valid_onchip_ram_s1_shift_register : STD_LOGIC;
signal cpu_data_master_read_data_valid_onchip_ram_s1_shift_register_in : STD_LOGIC;
signal cpu_data_master_saved_grant_onchip_ram_s1 : STD_LOGIC;
signal cpu_instruction_master_arbiterlock : STD_LOGIC;
signal cpu_instruction_master_continuerequest : STD_LOGIC;
signal cpu_instruction_master_read_data_valid_onchip_ram_s1_shift_register : STD_LOGIC;
signal cpu_instruction_master_read_data_valid_onchip_ram_s1_shift_register_in : STD_LOGIC;
signal cpu_instruction_master_saved_grant_onchip_ram_s1 : STD_LOGIC;
signal d1_reasons_to_wait : STD_LOGIC;
signal in_a_read_cycle : STD_LOGIC;
signal in_a_write_cycle : STD_LOGIC;
signal internal_cpu_data_master_granted_onchip_ram_s1 : STD_LOGIC;
signal internal_cpu_data_master_qualified_request_onchip_ram_s1 : STD_LOGIC;
signal internal_cpu_data_master_requests_onchip_ram_s1 : STD_LOGIC;
signal internal_cpu_instruction_master_granted_onchip_ram_s1 : STD_LOGIC;
signal internal_cpu_instruction_master_qualified_request_onchip_ram_s1 : STD_LOGIC;
signal internal_cpu_instruction_master_requests_onchip_ram_s1 : STD_LOGIC;
signal last_cycle_cpu_data_master_granted_slave_onchip_ram_s1 : STD_LOGIC;
signal last_cycle_cpu_instruction_master_granted_slave_onchip_ram_s1 : STD_LOGIC;
signal onchip_ram_s1_allgrants : STD_LOGIC;
signal onchip_ram_s1_allow_new_arb_cycle : STD_LOGIC;
signal onchip_ram_s1_any_continuerequest : STD_LOGIC;
signal onchip_ram_s1_arb_addend : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_arb_counter_enable : STD_LOGIC;
signal onchip_ram_s1_arb_share_counter : STD_LOGIC;
signal onchip_ram_s1_arb_share_counter_next_value : STD_LOGIC;
signal onchip_ram_s1_arb_share_set_values : STD_LOGIC;
signal onchip_ram_s1_arb_winner : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_arbitration_holdoff_internal : STD_LOGIC;
signal onchip_ram_s1_beginbursttransfer_internal : STD_LOGIC;
signal onchip_ram_s1_begins_xfer : STD_LOGIC;
signal onchip_ram_s1_chosen_master_double_vector : STD_LOGIC_VECTOR (3 DOWNTO 0);
signal onchip_ram_s1_chosen_master_rot_left : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_end_xfer : STD_LOGIC;
signal onchip_ram_s1_firsttransfer : STD_LOGIC;
signal onchip_ram_s1_grant_vector : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_in_a_read_cycle : STD_LOGIC;
signal onchip_ram_s1_in_a_write_cycle : STD_LOGIC;
signal onchip_ram_s1_master_qreq_vector : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_saved_chosen_master_vector : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal onchip_ram_s1_slavearbiterlockenable : STD_LOGIC;
signal onchip_ram_s1_waits_for_read : STD_LOGIC;
signal onchip_ram_s1_waits_for_write : STD_LOGIC;
signal p1_cpu_data_master_read_data_valid_onchip_ram_s1_shift_register : STD_LOGIC;
signal p1_cpu_instruction_master_read_data_valid_onchip_ram_s1_shift_register : STD_LOGIC;
signal wait_for_onchip_ram_s1_counter : STD_LOGIC;
begin
process (clk, reset_n)
begin
if reset_n = '0' then
d1_reasons_to_wait <= std_logic'('0');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
d1_reasons_to_wait <= NOT onchip_ram_s1_end_xfer;
end if;
end if;
end process;
onchip_ram_s1_begins_xfer <= NOT d1_reasons_to_wait AND ((internal_cpu_data_master_qualified_request_onchip_ram_s1 OR internal_cpu_instruction_master_qualified_request_onchip_ram_s1));
internal_cpu_data_master_requests_onchip_ram_s1 <= to_std_logic(((Std_Logic_Vector'(cpu_data_master_address_to_slave(14 DOWNTO 11) & std_logic_vector'("00000000000")) = std_logic_vector'("000000000000000")))) AND ((cpu_data_master_read OR cpu_data_master_write));
--assign onchip_ram_s1_readdata_from_sa = onchip_ram_s1_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
onchip_ram_s1_readdata_from_sa <= onchip_ram_s1_readdata;
--registered rdv signal_name registered_cpu_data_master_read_data_valid_onchip_ram_s1 assignment, which is an e_assign
registered_cpu_data_master_read_data_valid_onchip_ram_s1 <= cpu_data_master_read_data_valid_onchip_ram_s1_shift_register_in;
--onchip_ram_s1_arb_share_counter set values, which is an e_mux
onchip_ram_s1_arb_share_set_values <= std_logic'('1');
--onchip_ram_s1_arb_share_counter_next_value assignment, which is an e_assign
onchip_ram_s1_arb_share_counter_next_value <= Vector_To_Std_Logic(A_WE_StdLogicVector((std_logic'(onchip_ram_s1_firsttransfer) = '1'), (((std_logic_vector'("00000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(onchip_ram_s1_arb_share_set_values))) - std_logic_vector'("000000000000000000000000000000001"))), A_WE_StdLogicVector((std_logic'(onchip_ram_s1_arb_share_counter) = '1'), (((std_logic_vector'("00000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(onchip_ram_s1_arb_share_counter))) - std_logic_vector'("000000000000000000000000000000001"))), std_logic_vector'("000000000000000000000000000000000"))));
--onchip_ram_s1_allgrants all slave grants, which is an e_mux
onchip_ram_s1_allgrants <= ((or_reduce(onchip_ram_s1_grant_vector) OR or_reduce(onchip_ram_s1_grant_vector)) OR or_reduce(onchip_ram_s1_grant_vector)) OR or_reduce(onchip_ram_s1_grant_vector);
--onchip_ram_s1_end_xfer assignment, which is an e_assign
onchip_ram_s1_end_xfer <= NOT ((onchip_ram_s1_waits_for_read OR onchip_ram_s1_waits_for_write));
--onchip_ram_s1_arb_share_counter arbitration counter enable, which is an e_assign
onchip_ram_s1_arb_counter_enable <= onchip_ram_s1_end_xfer AND onchip_ram_s1_allgrants;
--onchip_ram_s1_arb_share_counter counter, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
onchip_ram_s1_arb_share_counter <= std_logic'('0');
elsif clk'event and clk = '1' then
if std_logic'(onchip_ram_s1_arb_counter_enable) = '1' then
onchip_ram_s1_arb_share_counter <= onchip_ram_s1_arb_share_counter_next_value;
end if;
end if;
end process;
--onchip_ram_s1_slavearbiterlockenable slave enables arbiterlock, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
onchip_ram_s1_slavearbiterlockenable <= std_logic'('0');
elsif clk'event and clk = '1' then
if std_logic'((or_reduce(onchip_ram_s1_master_qreq_vector) AND onchip_ram_s1_end_xfer)) = '1' then
onchip_ram_s1_slavearbiterlockenable <= onchip_ram_s1_arb_share_counter_next_value;
end if;
end if;
end process;
--cpu/data_master onchip_ram/s1 arbiterlock, which is an e_assign
cpu_data_master_arbiterlock <= onchip_ram_s1_slavearbiterlockenable AND cpu_data_master_continuerequest;
--cpu/instruction_master onchip_ram/s1 arbiterlock, which is an e_assign
cpu_instruction_master_arbiterlock <= onchip_ram_s1_slavearbiterlockenable AND cpu_instruction_master_continuerequest;
--cpu/instruction_master granted onchip_ram/s1 last time, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
last_cycle_cpu_instruction_master_granted_slave_onchip_ram_s1 <= std_logic'('0');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
last_cycle_cpu_instruction_master_granted_slave_onchip_ram_s1 <= Vector_To_Std_Logic(A_WE_StdLogicVector((std_logic'(cpu_instruction_master_saved_grant_onchip_ram_s1) = '1'), std_logic_vector'("00000000000000000000000000000001"), A_WE_StdLogicVector((std_logic'(((onchip_ram_s1_arbitration_holdoff_internal OR NOT internal_cpu_instruction_master_requests_onchip_ram_s1))) = '1'), std_logic_vector'("00000000000000000000000000000000"), (std_logic_vector'("0000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(last_cycle_cpu_instruction_master_granted_slave_onchip_ram_s1))))));
end if;
end if;
end process;
--cpu_instruction_master_continuerequest continued request, which is an e_mux
cpu_instruction_master_continuerequest <= last_cycle_cpu_instruction_master_granted_slave_onchip_ram_s1 AND internal_cpu_instruction_master_requests_onchip_ram_s1;
--onchip_ram_s1_any_continuerequest at least one master continues requesting, which is an e_mux
onchip_ram_s1_any_continuerequest <= cpu_instruction_master_continuerequest OR cpu_data_master_continuerequest;
internal_cpu_data_master_qualified_request_onchip_ram_s1 <= internal_cpu_data_master_requests_onchip_ram_s1 AND NOT (((((cpu_data_master_read AND (cpu_data_master_read_data_valid_onchip_ram_s1_shift_register))) OR (((NOT cpu_data_master_waitrequest) AND cpu_data_master_write))) OR cpu_instruction_master_arbiterlock));
--cpu_data_master_read_data_valid_onchip_ram_s1_shift_register_in mux for readlatency shift register, which is an e_mux
cpu_data_master_read_data_valid_onchip_ram_s1_shift_register_in <= ((internal_cpu_data_master_granted_onchip_ram_s1 AND cpu_data_master_read) AND NOT onchip_ram_s1_waits_for_read) AND NOT (cpu_data_master_read_data_valid_onchip_ram_s1_shift_register);
--shift register p1 cpu_data_master_read_data_valid_onchip_ram_s1_shift_register in if flush, otherwise shift left, which is an e_mux
p1_cpu_data_master_read_data_valid_onchip_ram_s1_shift_register <= Vector_To_Std_Logic(Std_Logic_Vector'(A_ToStdLogicVector(cpu_data_master_read_data_valid_onchip_ram_s1_shift_register) & A_ToStdLogicVector(cpu_data_master_read_data_valid_onchip_ram_s1_shift_register_in)));
--cpu_data_master_read_data_valid_onchip_ram_s1_shift_register for remembering which master asked for a fixed latency read, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
cpu_data_master_read_data_valid_onchip_ram_s1_shift_register <= std_logic'('0');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -