📄 jacobn.m
字号:
%JACOBN Compute manipulator Jacobian in end-effector frame
%
% JN = JACOBN(ROBOT, Q)
%
% Returns a Jacobian matrix for the robot ROBOT in pose Q.
%
% The manipulator Jacobian matrix maps differential changes in joint space
% to differential Cartesian motion of the end-effector (end-effector coords).
% dX = J dQ
%
% This function uses the technique of
% Paul, Shimano, Mayer
% Differential Kinematic Control Equations for Simple Manipulators
% IEEE SMC 11(6) 1981
% pp. 456-460
%
% For an n-axis manipulator the Jacobian is a 6 x n matrix.
%
% See also: JACOB0, DIFF2TR, TR2DIFF
% MOD.HISTORY
% 3/99 uses objects
% 10/01 handle Craig's conventions
% $Log: jacobn.m,v $
% Revision 1.3 2002/04/01 11:47:14 pic
% General cleanup of code: help comments, see also, copyright, remnant dh/dyn
% references, clarification of functions.
%
% $Revision: 1.3 $
% Copyright (C) 1999-2002, by Peter I. Corke
function J = jacobn(robot, q)
n = robot.n;
L = robot.link; % get the links
J = [];
U = robot.tool;
for j=n:-1:1,
if robot.mdh == 0,
% standard DH convention
U = L{j}( q(j) ) * U;
end
if L{j}.RP == 'R',
% revolute axis
d = [ -U(1,1)*U(2,4)+U(2,1)*U(1,4)
-U(1,2)*U(2,4)+U(2,2)*U(1,4)
-U(1,3)*U(2,4)+U(2,3)*U(1,4)];
delta = U(3,1:3)'; % nz oz az
else
% prismatic axis
d = U(3,1:3)'; % nz oz az
delta = zeros(3,1); % 0 0 0
end
J = [[d; delta] J];
if robot.mdh ~= 0,
% modified DH convention
U = L{j}( q(j) ) * U;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -