📄 olp_rock.m
字号:
% Generates the open-loop connection for the
% rocket stabilization system and displays
% frequency responses
%
% flight time
t = input ('Enter time t = ');
% open-loop interconnection
sys_rock
%
% nominal frequency response
G_ny1_u = sel(G_rock,10,8);
[A,B,C,D] = unpck(G_ny1_u);
omega = logspace(-1,3,10000);
[magp phasep] = bode(A,B,C,D,1,omega);
mag = 20*log10(magp);
figure(1)
semilogx(omega,mag,'r'), grid
xlabel('Frequency (rad/s)'), ylabel('Magnitude')
title('Magnitude plot of G_{n_{y}\delta^o}')
figure(2)
semilogx(omega,phasep,'b'), grid
xlabel('Frequency (rad/s)'), ylabel('Phase (deg)')
title('Phase plot of G_{n_{y}\delta^o}')
%
omega = logspace(-1,5,100);
Wa_g = frsp(Wa,omega);
figure(5)
vplot('liv,lm',Wa_g,'m-'), grid
title('Accelerometer frequency response')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
%
omega = logspace(-1,5,100);
Wan_g = frsp(Wan,omega);
figure(6)
vplot('liv,lm',Wan_g,'m-'), grid
title('Accelerometer noise weight')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
%
omega = logspace(-1,5,100);
Wg_g = frsp(Wg,omega);
figure(3)
vplot('liv,lm',Wg_g,'m-'), grid
title('Rate gyro frequency response')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
%
omega = logspace(-1,5,100);
Wgn_g = frsp(Wgn,omega);
figure(4)
vplot('liv,lm',Wgn_g,'m-'), grid
title('Rate gyro noise weight')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
%
omega = logspace(-2,3,100);
Wm_g = frsp(Wm,omega);
figure(7)
vplot('liv,lm',Wm_g,'r-'), grid
title('Model frequency response')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
%
omega = logspace(-4,2,200);
Wp_g = frsp(Wp,omega);
Wpi_g = minv(Wp_g);
figure(8)
vplot('liv,lm',Wpi_g,'r-'), grid
title('Inverse of Performance Weighting Function')
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -