📄 neuro_go2pos_bms.h
字号:
/*Brainstormers 2D (Soccer Simulation League 2D)PUBLIC SOURCE CODE RELEASE 2005Copyright (C) 1998-2005 Neuroinformatics Group, University of Osnabrueck, GermanyThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.*/#ifndef _NEURO_GO2POS_BMS_H_#define _NEURO_GO2POS_BMS_H_#include "../base_bm.h"#include "angle.h"#include "Vector.h"#include "cmd.h"#include "n++.h"#include "macro_msg.h"#include "basic_cmd_bms.h"class NeuroGo2PosItrActions { /* neurogo2pos uses dashs */ static const Value dash_power_min = 40; static const Value dash_power_inc = 20; static const Value dash_power_max= 100; static const Value dash_power_steps = (int)((dash_power_max - dash_power_min)/dash_power_inc) +1; /* neurogo2pos uses turns */ static const Value turn_min= -M_PI; // important: start with strongest turn to the right static const Value turn_max= M_PI; // and end with strongest turn to the left! static const Value turn_inc= 2*M_PI/72.0; static const int turn_steps=(int)((turn_max - turn_min)/turn_inc) +1; Cmd_Main action; Angle turn; int turn_counter; Value dash; int dash_counter; Value move; public: //ItrActions(); static bool init(); void reset() { turn= turn_min; dash= dash_power_min; turn_counter= 0; dash_counter= 0; } Cmd_Main * next() { if ( turn_counter < turn_steps ) { action.unset_lock(); action.unset_cmd(); // a bit tricky: make sure that maximum turn angles are contained in action set !!!! if(turn <= -(M_PI - 0.01)) // angle is smaller or approx. equal than max neg. turn action.set_turn(-(M_PI - 0.00001/180. * PI)); //action.set_turn(-M_PI); else if(turn >=(M_PI - 0.01))// angle is larger or approx. equal than max pos. turn action.set_turn((M_PI - 0.00001/180. * PI)); //action.set_turn(M_PI); else action.set_turn( turn ); turn += turn_inc; turn_counter++; return &action; } if ( dash_counter < dash_power_steps ) { action.unset_lock(); action.unset_cmd(); if(dash>dash_power_max) dash=dash_power_max; action.set_dash( dash ); dash += dash_power_inc; dash_counter++; return &action; } return 0; }};class NeuroGo2Pos: public BaseBehavior { BasicCmd *basic_cmd; int obstacle_found; static const Value MAX_GO2POS_DISTANCE= 5.0; static bool initialized; static int op_mode; static bool use_regular_states; struct State { Vector my_vel; Vector my_pos; ANGLE my_angle; Vector opnt1_pos; }; static const Value costs_failure = 1.0; static const Value costs_success = 0.0; static Value target_tolerance; static int consider_obstacles; static int use_old_go2pos; static Value costs_per_action; // important: do init first, since net loading might be aborted static Net * net; NeuroGo2PosItrActions itr_actions; Vector target_pos; void get_cur_state( State & state); void get_features( State const& state, Vector target, float * net_in); Value evaluate( State const& state, Vector const& target); bool is_failure( State const& state, Vector const& target); bool is_success( State const& state, Vector const& target); bool neuro_decide(Cmd & cmd); // learning stuff #define STATE_MEMORY_SIZE 5000 #define NUM_FEATURES 8 float uparams[10]; struct PatternSet{ long ctr;; float input[STATE_MEMORY_SIZE][NUM_FEATURES],target[STATE_MEMORY_SIZE]; }; static int num_stored; static int num_epochs; static int store_per_cycle; static int repeat_mainlearningloop; static int state_memory_ctr; typedef struct{ State state; Vector target_pos; } StateMemoryEntry; StateMemoryEntry state_memory[STATE_MEMORY_SIZE]; PatternSet training_set; bool learn(Cmd &cmd); void check_cmd(Cmd &cmd); void store_state(); void print_memory(); void generate_training_patterns(); void train_nn(); Value get_value_of_best_successor(State const &state, Vector const& target); public: NeuroGo2Pos(); static bool init(char const * conf_file, int argc, char const* const* argv); virtual ~NeuroGo2Pos(); void set_target(Vector target, Value target_tolerance = 1.0, int cons_obstacles = 1, int use_old = 0); bool get_cmd(Cmd & cmd);};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -