📄 intercept_5_10.net
字号:
# ------ net info -------------------------# max ball dist = 5, max ball velocity 1.0# RL PARAMETERS: learning rate: 0.1 expl.rate: 0# ACTIONS: DASH (100 10 100) TURN (24) KICK (0 0 0) (0)# trained 8 million episodes# ---------------------------------# Layers: 3# Topology (input - hidden - output)topology: 6 64 1 set_update_f 0 0.100000 0.000000 0.000000 0.000000 -1.999326 0.000000 0.000000 -1.999321 -1.999324 0.000000 input_scale 6 0 0.5 0.5 0input_scale 5 0 0.5 0.5 0input_scale 4 0 2 2 0input_scale 3 0 2 2 0input_scale 2 0 0.5 0.5 0input_scale 1 0 0.1 0.1 0# Connection structure - format:# <unit_no> <act_id># Weights <from_unit> <value>7 10 -0.466831 1 -0.557095 2 -0.323792 3 -0.225105 4 -0.135291 5 -0.434153 6 -0.375136 8 10 -0.179732 1 -0.0348841 2 -0.0265776 3 -0.125555 4 0.288351 5 0.462042 6 0.0304686 9 10 0.233482 1 -0.60674 2 0.642984 3 -0.686561 4 -0.833246 5 -0.145657 6 1.00778 10 10 -0.540546 1 0.618806 2 0.0530363 3 0.510522 4 -0.0466647 5 1.06438 6 -0.0973371 11 10 -0.425731 1 0.243925 2 0.0142809 3 -0.555265 4 0.619471 5 0.368524 6 -1.44922 12 10 -0.188296 1 -0.559062 2 -0.194847 3 0.246627 4 0.131046 5 0.231908 6 -0.478698 13 10 -0.00082571 1 -0.757038 2 -0.0679044 3 0.546699 4 -0.635269 5 -0.33845 6 -0.0969617 14 10 -0.0338511 1 0.112687 2 -0.112248 3 0.310127 4 -0.0576128 5 0.0288416 6 -0.07102 15 10 -0.0465335 1 0.206171 2 -0.301651 3 0.317318 4 0.390625 5 0.30281 6 -0.44862 16 10 0.498061 1 0.00758013 2 -0.260374 3 -0.243195 4 -0.664507 5 0.159703 6 0.11187 17 10 -0.0771856 1 0.0654031 2 0.0361953 3 0.112635 4 0.205177 5 0.385311 6 0.0803269 18 10 0.258552 1 -0.0836327 2 -0.110252 3 -0.446088 4 -0.434986 5 0.332765 6 0.259363 19 10 0.637163 1 0.385955 2 -0.00812509 3 0.0777122 4 0.535878 5 -0.0462816 6 -2.44424 20 10 -0.426917 1 -0.0427182 2 -0.0316121 3 -0.253201 4 -0.0278996 5 0.292121 6 -0.132701 21 10 -0.0218346 1 0.275541 2 0.132402 3 0.104904 4 -0.25473 5 0.292644 6 0.0147283 22 10 -0.0985311 1 -0.0765681 2 0.207368 3 0.381014 4 0.223665 5 -0.00903692 6 0.410644 23 10 -0.322378 1 0.382524 2 -0.400132 3 0.466741 4 0.206571 5 0.309306 6 -0.394584 24 10 0.382652 1 1.14524 2 0.741188 3 0.241398 4 0.93582 5 0.395595 6 0.42093 25 10 -0.325413 1 -0.142146 2 -0.00737832 3 -0.416265 4 0.0827853 5 0.247094 6 -0.217765 26 10 -0.141995 1 0.434338 2 -0.182844 3 0.392941 4 -0.0588271 5 0.461786 6 0.423526 27 10 0.1646 1 -0.0252342 2 -0.0384599 3 0.569828 4 0.337301 5 0.321229 6 -0.527629 28 10 0.0342718 1 -0.812119 2 -1.7705 3 -0.450639 4 0.0111255 5 -0.289726 6 -1.13175 29 10 -0.266976 1 -0.272306 2 -0.238578 3 -0.459354 4 -0.597044 5 -0.278922 6 -0.3591 30 10 0.486808 1 0.0437261 2 3.06885 3 0.239011 4 -0.96725 5 0.009187 6 2.62949 31 10 -0.0806358 1 -0.0755828 2 0.0864636 3 0.113755 4 -0.4334 5 0.302299 6 -0.0992968 32 10 0.00565454 1 -0.275816 2 0.461523 3 -0.148281 4 -0.352038 5 -0.364092 6 -0.2594 33 10 1.28945 1 0.880601 2 0.0525168 3 -0.930347 4 -0.586191 5 1.67704 6 1.37752 34 10 0.357307 1 0.0556498 2 0.0802785 3 0.038798 4 -0.119928 5 0.399822 6 0.469812 35 10 -0.659941 1 -5.0684 2 0.00756662 3 1.05251 4 0.051949 5 -1.05259 6 -0.0230658 36 10 0.0170026 1 0.0727944 2 0.272295 3 -0.174261 4 0.201249 5 0.118441 6 0.378046 37 10 -0.236355 1 -0.44823 2 -0.825471 3 -0.460499 4 0.619286 5 0.553236 6 -0.870267 38 10 -0.0556432 1 0.407915 2 0.113126 3 0.195484 4 -0.0974976 5 0.00197793 6 -0.168724 39 10 -0.307029 1 -0.336673 2 -0.336559 3 -0.216847 4 0.105579 5 0.417342 6 -0.0923065 40 10 0.179979 1 -0.0658222 2 0.00952232 3 -0.0597549 4 -0.481507 5 -0.208276 6 -0.359495 41 10 -0.0715099 1 0.412732 2 0.390539 3 0.125094 4 0.354252 5 -0.473667 6 0.184661 42 10 0.532782 1 -0.346136 2 -0.204673 3 -0.515139 4 -0.0632098 5 0.431407 6 -0.456857 43 10 0.377056 1 0.258497 2 0.0439114 3 -0.00728222 4 -0.225145 5 -0.412015 6 -1.30838 44 10 -0.00118996 1 0.277465 2 0.16838 3 -0.0283129 4 0.323194 5 0.241035 6 -0.21887 45 10 -0.82444 1 -0.698291 2 0.0199395 3 0.520838 4 -0.582935 5 -0.456407 6 1.43728 46 10 -0.334783 1 0.607892 2 -0.0905135 3 -0.44943 4 0.531867 5 -0.899761 6 -1.09011 47 10 -0.276408 1 -0.242685 2 0.097778 3 0.296417 4 -0.509744 5 -0.0919712 6 0.259205 48 10 -0.123918 1 -0.946708 2 0.0340083 3 0.719319 4 0.555377 5 -0.620057 6 -2.00805 49 10 0.328424 1 0.240239 2 -0.28178 3 0.0554043 4 -0.115175 5 -0.654438 6 0.434984 50 10 -0.486328 1 -0.500922 2 -0.0794645 3 0.139364 4 -0.0544603 5 0.706168 6 0.131147 51 10 0.239397 1 0.256981 2 0.10507 3 0.383217 4 -0.542164 5 -0.238441 6 -0.38401 52 10 0.0633168 1 -0.29204 2 -1.04047 3 0.833862 4 0.831151 5 -0.464743 6 -0.054059 53 10 -0.398341 1 0.0629553 2 -0.325472 3 -0.186701 4 -0.0877563 5 0.429288 6 -0.132606 54 10 -0.052139 1 0.977997 2 -0.024315 3 -0.701607 4 0.688329 5 1.05608 6 -2.18613 55 10 -0.190206 1 -0.107875 2 0.835024 3 0.758789 4 -0.331376 5 -0.304345 6 -0.190247 56 10 0.13099 1 -0.148548 2 -0.137705 3 -0.29197 4 -0.351602 5 0.164246 6 -0.308902 57 10 0.137741 1 0.238796 2 -0.122049 3 -0.42244 4 0.27441 5 -0.0033903 6 0.085291 58 10 0.483293 1 0.094741 2 0.216802 3 0.124618 4 -0.256222 5 -0.0436847 6 -0.236826 59 10 1.05287 1 0.0302086 2 0.408816 3 0.439891 4 -0.525048 5 0.527719 6 -0.365055 60 10 0.316027 1 0.424482 2 -0.213663 3 0.267204 4 -0.513616 5 -0.28702 6 -0.0124179 61 10 0.145993 1 0.850488 2 -1.42055 3 0.481212 4 -0.299847 5 0.389587 6 -0.824266 62 10 0.132498 1 0.280775 2 0.424381 3 -0.308128 4 0.252011 5 0.282034 6 0.181206 63 10 0.0292064 1 -0.0306577 2 -0.393124 3 0.0245486 4 0.050326 5 0.286887 6 -0.344508 64 10 -0.327911 1 0.0120944 2 -0.495569 3 0.69681 4 -0.330942 5 -0.400283 6 0.0952881 65 10 0.500737 1 -0.409506 2 0.159263 3 -0.264292 4 0.278689 5 -0.188389 6 -1.22512 66 10 0.34437 1 0.0179477 2 0.303401 3 -0.403239 4 0.00351534 5 0.0904659 6 0.367985 67 10 -0.417337 1 0.685897 2 -0.584368 3 -0.20337 4 -0.552317 5 -0.110924 6 0.0667022 68 10 0.126024 1 -0.307864 2 -2.09175 3 0.666822 4 0.6584 5 -0.173801 6 -1.78049 69 10 -0.968404 1 -0.656557 2 -0.0564844 3 0.224142 4 0.570678 5 0.861139 6 -2.15847 70 10 0.0337755 1 -0.462308 2 0.242333 3 -0.440783 4 0.356256 5 -0.281418 6 0.049751 71 00 -0.00101425 7 0.144346 8 0.101952 9 0.715698 10 0.826785 11 0.908235 12 0.18565 13 0.623804 14 -0.162323 15 -0.205397 16 0.273372 17 0.0660778 18 0.0593231 19 -1.48686 20 0.126207 21 -0.198074 22 -0.264976 23 -0.109674 24 0.652448 25 -0.123388 26 0.185788 27 -0.289458 28 -0.757974 29 -0.363843 30 -1.12071 31 0.0482197 32 0.23822 33 -1.82578 34 -0.345124 35 -3.04942 36 -0.255911 37 0.762441 38 0.304991 39 0.0389659 40 0.0831108 41 0.01332 42 -0.38076 43 -0.717432 44 -0.0851994 45 1.17113 46 0.930409 47 0.380597 48 -1.42239 49 -0.302073 50 0.401627 51 0.310347 52 0.955283 53 -0.109481 54 1.53064 55 0.91424 56 0.142461 57 -0.0811659 58 0.0590977 59 -0.624115 60 0.0725036 61 0.778767 62 -0.130856 63 -0.106591 64 0.22229 65 -0.634926 66 -0.167702 67 -0.499783 68 -1.2363 69 1.49381 70 -0.520242
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -