⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softfloat-macros

📁 <Floating Point Unit Core> fpupack.vhd pre_norm_addsub.vhd addsub_28.vhd post_norm_addsub.
💻
📖 第 1 页 / 共 2 页
字号:
     bits64 b0,
     bits64 b1,
     bits64 b2,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 carry0, carry1;

    z2 = a2 + b2;
    carry1 = ( z2 < a2 );
    z1 = a1 + b1;
    carry0 = ( z1 < a1 );
    z0 = a0 + b0;
    z1 += carry1;
    z0 += ( z1 < carry1 );
    z0 += carry0;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
| 128-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
| 2^128, so any borrow out (carry out) is lost.  The result is broken into two
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
| `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 sub128(
     bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{

    *z1Ptr = a1 - b1;
    *z0Ptr = a0 - b0 - ( a1 < b1 );

}

/*----------------------------------------------------------------------------
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost.  The
| result is broken into three 64-bit pieces which are stored at the locations
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 sub192(
     bits64 a0,
     bits64 a1,
     bits64 a2,
     bits64 b0,
     bits64 b1,
     bits64 b2,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 borrow0, borrow1;

    z2 = a2 - b2;
    borrow1 = ( a2 < b2 );
    z1 = a1 - b1;
    borrow0 = ( a1 < b1 );
    z0 = a0 - b0;
    z0 -= ( z1 < borrow1 );
    z1 -= borrow1;
    z0 -= borrow0;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies `a' by `b' to obtain a 128-bit product.  The product is broken
| into two 64-bit pieces which are stored at the locations pointed to by
| `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits32 aHigh, aLow, bHigh, bLow;
    bits64 z0, zMiddleA, zMiddleB, z1;

    aLow = a;
    aHigh = a>>32;
    bLow = b;
    bHigh = b>>32;
    z1 = ( (bits64) aLow ) * bLow;
    zMiddleA = ( (bits64) aLow ) * bHigh;
    zMiddleB = ( (bits64) aHigh ) * bLow;
    z0 = ( (bits64) aHigh ) * bHigh;
    zMiddleA += zMiddleB;
    z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
    zMiddleA <<= 32;
    z1 += zMiddleA;
    z0 += ( z1 < zMiddleA );
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
| `b' to obtain a 192-bit product.  The product is broken into three 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
| `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 mul128By64To192(
     bits64 a0,
     bits64 a1,
     bits64 b,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2, more1;

    mul64To128( a1, b, &z1, &z2 );
    mul64To128( a0, b, &z0, &more1 );
    add128( z0, more1, 0, z1, &z0, &z1 );
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
| product.  The product is broken into four 64-bit pieces which are stored at
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 mul128To256(
     bits64 a0,
     bits64 a1,
     bits64 b0,
     bits64 b1,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr,
     bits64 *z3Ptr
 )
{
    bits64 z0, z1, z2, z3;
    bits64 more1, more2;

    mul64To128( a1, b1, &z2, &z3 );
    mul64To128( a1, b0, &z1, &more2 );
    add128( z1, more2, 0, z2, &z1, &z2 );
    mul64To128( a0, b0, &z0, &more1 );
    add128( z0, more1, 0, z1, &z0, &z1 );
    mul64To128( a0, b1, &more1, &more2 );
    add128( more1, more2, 0, z2, &more1, &z2 );
    add128( z0, z1, 0, more1, &z0, &z1 );
    *z3Ptr = z3;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Returns an approximation to the 64-bit integer quotient obtained by dividing
| `b' into the 128-bit value formed by concatenating `a0' and `a1'.  The
| divisor `b' must be at least 2^63.  If q is the exact quotient truncated
| toward zero, the approximation returned lies between q and q + 2 inclusive.
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
| unsigned integer is returned.
*----------------------------------------------------------------------------*/

static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
{
    bits64 b0, b1;
    bits64 rem0, rem1, term0, term1;
    bits64 z;

    if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
    b0 = b>>32;
    z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
    mul64To128( b, z, &term0, &term1 );
    sub128( a0, a1, term0, term1, &rem0, &rem1 );
    while ( ( (sbits64) rem0 ) < 0 ) {
        z -= LIT64( 0x100000000 );
        b1 = b<<32;
        add128( rem0, rem1, b0, b1, &rem0, &rem1 );
    }
    rem0 = ( rem0<<32 ) | ( rem1>>32 );
    z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
    return z;

}

/*----------------------------------------------------------------------------
| Returns an approximation to the square root of the 32-bit significand given
| by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
| `aExp' (the least significant bit) is 1, the integer returned approximates
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
| case, the approximation returned lies strictly within +/-2 of the exact
| value.
*----------------------------------------------------------------------------*/

static bits32 estimateSqrt32( int16 aExp, bits32 a )
{
    static const bits16 sqrtOddAdjustments[] = {
        0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
        0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
    };
    static const bits16 sqrtEvenAdjustments[] = {
        0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
        0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
    };
    int8 index;
    bits32 z;

    index = ( a>>27 ) & 15;
    if ( aExp & 1 ) {
        z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
        z = ( ( a / z )<<14 ) + ( z<<15 );
        a >>= 1;
    }
    else {
        z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
        z = a / z + z;
        z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
        if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
    }
    return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );

}

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/

static int8 countLeadingZeros32( bits32 a )
{
    static const int8 countLeadingZerosHigh[] = {
        8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    int8 shiftCount;

    shiftCount = 0;
    if ( a < 0x10000 ) {
        shiftCount += 16;
        a <<= 16;
    }
    if ( a < 0x1000000 ) {
        shiftCount += 8;
        a <<= 8;
    }
    shiftCount += countLeadingZerosHigh[ a>>24 ];
    return shiftCount;

}

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/

static int8 countLeadingZeros64( bits64 a )
{
    int8 shiftCount;

    shiftCount = 0;
    if ( a < ( (bits64) 1 )<<32 ) {
        shiftCount += 32;
    }
    else {
        a >>= 32;
    }
    shiftCount += countLeadingZeros32( a );
    return shiftCount;

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 == b0 ) && ( a1 == b1 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than the 128-bit value formed by concatenating `b0' and `b1'.  Otherwise,
| returns 0.
*----------------------------------------------------------------------------*/

INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 != b0 ) || ( a1 != b1 );

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -