📄 pci_pciw_fifo_control.v
字号:
//////////////////////////////////////////////////////////////////////
//// ////
//// File name "pciw_fifo_control.v" ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - Miha Dolenc (mihad@opencores.org) ////
//// ////
//// All additional information is avaliable in the README ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_pciw_fifo_control.v,v $
// Revision 1.5 2003/08/14 13:06:03 simons
// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
//
// Revision 1.4 2003/08/08 16:36:33 tadejm
// Added 'three_left_out' to pci_pciw_fifo signaling three locations before full. Added comparison between current registered cbe and next unregistered cbe to signal wb_master whether it is allowed to performe burst or not. Due to this, I needed 'three_left_out' so that writing to pci_pciw_fifo can be registered, otherwise timing problems would occure.
//
// Revision 1.3 2003/07/29 08:20:11 mihad
// Found and simulated the problem in the synchronization logic.
// Repaired the synchronization logic in the FIFOs.
//
//
/* FIFO_CONTROL module provides read/write address and status generation for
FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
`include "pci_constants.v"
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
module pci_pciw_fifo_control
(
rclock_in,
wclock_in,
renable_in,
wenable_in,
reset_in,
almost_full_out,
full_out,
almost_empty_out,
empty_out,
waddr_out,
raddr_out,
rallow_out,
wallow_out,
three_left_out,
two_left_out
);
parameter ADDR_LENGTH = 7 ;
// independent clock inputs - rclock_in = read clock, wclock_in = write clock
input rclock_in, wclock_in;
// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
// write address changes on rising edge of wclock_in when writes are allowed
input renable_in, wenable_in;
// reset input
input reset_in;
// almost full and empy status outputs
output almost_full_out, almost_empty_out;
// full and empty status outputs
output full_out, empty_out;
// read and write addresses outputs
output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
// read and write allow outputs
output rallow_out, wallow_out ;
// three and two locations left output indicator
output three_left_out ;
output two_left_out ;
// read address register
reg [(ADDR_LENGTH - 1):0] raddr ;
// write address register
reg [(ADDR_LENGTH - 1):0] waddr;
reg [(ADDR_LENGTH - 1):0] waddr_plus1;
assign waddr_out = waddr ;
// grey code registers
// grey code pipeline for write address
reg [(ADDR_LENGTH - 1):0] wgrey_minus1 ; // previous
reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next
reg [(ADDR_LENGTH - 1):0] wgrey_next_plus1 ; // next plus 1
// next write gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
wire [(ADDR_LENGTH - 2):0] calc_wgrey_next_plus1 = waddr_plus1[(ADDR_LENGTH - 1):1] ^ waddr_plus1[(ADDR_LENGTH - 2):0] ;
// grey code pipeline for read address
reg [(ADDR_LENGTH - 1):0] rgrey_minus2 ; // two before current
reg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before current
reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next
// next read gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
// write allow - writes are allowed when fifo is not full
assign wallow_out = wenable_in & ~full_out ;
// clear generation for FFs and registers
wire clear = reset_in ;
//rallow generation
assign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty
// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
// when FIFO is empty, this register provides actual read address, so first location can be read
reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
// read address mux - when read is performed, next address is driven, so next data is available immediately after read
// this is convenient for zero wait stait bursts
assign raddr_out = rallow_out ? raddr_plus_one : raddr ;
always@(posedge rclock_in or posedge clear)
begin
if (clear)
begin
// initial values seem a bit odd - they are this way to allow easier grey pipeline implementation and to allow min fifo size of 8
raddr_plus_one <= #`FF_DELAY 5 ;
raddr <= #`FF_DELAY 4 ;
// raddr_plus_one <= #`FF_DELAY 6 ;
// raddr <= #`FF_DELAY 5 ;
end
else if (rallow_out)
begin
raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
raddr <= #`FF_DELAY raddr_plus_one ;
end
end
/*-----------------------------------------------------------------------------------------------
Read address control consists of Read address counter and Grey Address pipeline
There are 4 Grey addresses:
- rgrey_minus2 is Grey Code of address two before current address
- rgrey_minus1 is Grey Code of address one before current address
- rgrey_addr is Grey Code of current read address
- rgrey_next is Grey Code of next read address
--------------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in read clock domain
always@(posedge rclock_in or posedge clear)
begin
if (clear)
begin
rgrey_minus2 <= #1 0 ;
rgrey_minus1 <= #`FF_DELAY 1 ;
rgrey_addr <= #1 3 ;
rgrey_next <= #`FF_DELAY 2 ;
end
else
if (rallow_out)
begin
rgrey_minus2 <= #1 rgrey_minus1 ;
rgrey_minus1 <= #`FF_DELAY rgrey_addr ;
rgrey_addr <= #1 rgrey_next ;
rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
end
end
/*--------------------------------------------------------------------------------------------
Write address control consists of write address counter and 3 Grey Code Registers:
- wgrey_minus1 represents previous Grey coded write address
- wgrey_addr represents current Grey Coded write address
- wgrey_next represents next Grey Coded write address
- wgrey_next_plus1 represents second next Grey Coded write address
----------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in write clock domain
always@(posedge wclock_in or posedge clear)
begin
if (clear)
begin
wgrey_minus1 <= #`FF_DELAY 1 ;
wgrey_addr <= #`FF_DELAY 3 ;
wgrey_next <= #`FF_DELAY 2 ;
wgrey_next_plus1 <= #`FF_DELAY 6;
end
else
if (wallow_out)
begin
wgrey_minus1 <= #`FF_DELAY wgrey_addr ;
wgrey_addr <= #`FF_DELAY wgrey_next ;
wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
// wgrey_next <= #`FF_DELAY wgrey_next_plus1 ;
wgrey_next_plus1 <= #`FF_DELAY {waddr_plus1[(ADDR_LENGTH - 1)], calc_wgrey_next_plus1} ;
end
end
// write address counter - nothing special except initial value
always@(posedge wclock_in or posedge clear)
begin
if (clear)
begin
// initial value 5
waddr <= #`FF_DELAY 4 ;
waddr_plus1 <= #`FF_DELAY 5 ;
end
else
if (wallow_out)
begin
waddr <= #`FF_DELAY waddr + 1'b1 ;
waddr_plus1 <= #`FF_DELAY waddr_plus1 + 1'b1 ;
end
end
/*------------------------------------------------------------------------------------------------------------------------------
Gray coded address of read address decremented by two is synchronized to write clock domain and compared to:
- previous grey coded write address - if they are equal, the fifo is full
- gray coded write address. If they are equal, fifo is almost full.
- grey coded next write address. If they are equal, the fifo has two free locations left.
--------------------------------------------------------------------------------------------------------------------------------*/
wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus2 ;
reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus2 ;
pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus2
(
.data_in (rgrey_minus2),
.clk_out (wclock_in),
.sync_data_out (wclk_sync_rgrey_minus2),
.async_reset (clear)
) ;
always@(posedge wclock_in or posedge clear)
begin
if (clear)
begin
wclk_rgrey_minus2 <= #`FF_DELAY 0 ;
end
else
begin
wclk_rgrey_minus2 <= #`FF_DELAY wclk_sync_rgrey_minus2 ;
end
end
assign full_out = (wgrey_minus1 == wclk_rgrey_minus2) ;
assign almost_full_out = (wgrey_addr == wclk_rgrey_minus2) ;
assign two_left_out = (wgrey_next == wclk_rgrey_minus2) ;
assign three_left_out = (wgrey_next_plus1 == wclk_rgrey_minus2) ;
/*------------------------------------------------------------------------------------------------------------------------------
Empty control:
Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.
If they are equal, fifo is empty.
Almost empty control:
Synchronized write pointer is also compared to Gray coded next read address. If these two are
equal, fifo is almost empty.
--------------------------------------------------------------------------------------------------------------------------------*/
wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;
reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;
pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_addr
(
.data_in (wgrey_addr),
.clk_out (rclock_in),
.sync_data_out (rclk_sync_wgrey_addr),
.async_reset (clear)
) ;
always@(posedge rclock_in or posedge clear)
begin
if (clear)
rclk_wgrey_addr <= #`FF_DELAY 3 ;
else
rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;
end
assign almost_empty_out = (rgrey_next == rclk_wgrey_addr) ;
assign empty_out = (rgrey_addr == rclk_wgrey_addr) ;
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -