📄 std_2c35.v
字号:
cpu_data_master_writedata,
reset_n,
// outputs:
cf_ctl_address,
cf_ctl_chipselect_n,
cf_ctl_irq_from_sa,
cf_ctl_read_n,
cf_ctl_readdata_from_sa,
cf_ctl_reset_n,
cf_ctl_wait_counter_eq_0,
cf_ctl_wait_counter_eq_1,
cf_ctl_write_n,
cf_ctl_writedata,
cpu_data_master_granted_cf_ctl,
cpu_data_master_qualified_request_cf_ctl,
cpu_data_master_read_data_valid_cf_ctl,
cpu_data_master_requests_cf_ctl,
d1_cf_ctl_end_xfer
);
output [ 1: 0] cf_ctl_address;
output cf_ctl_chipselect_n;
output cf_ctl_irq_from_sa;
output cf_ctl_read_n;
output [ 31: 0] cf_ctl_readdata_from_sa;
output cf_ctl_reset_n;
output cf_ctl_wait_counter_eq_0;
output cf_ctl_wait_counter_eq_1;
output cf_ctl_write_n;
output [ 31: 0] cf_ctl_writedata;
output cpu_data_master_granted_cf_ctl;
output cpu_data_master_qualified_request_cf_ctl;
output cpu_data_master_read_data_valid_cf_ctl;
output cpu_data_master_requests_cf_ctl;
output d1_cf_ctl_end_xfer;
input cf_ctl_irq;
input [ 3: 0] cf_ctl_readdata;
input clk;
input [ 26: 0] cpu_data_master_address_to_slave;
input cpu_data_master_read;
input cpu_data_master_write;
input [ 31: 0] cpu_data_master_writedata;
input reset_n;
wire [ 1: 0] cf_ctl_address;
wire cf_ctl_allgrants;
wire cf_ctl_allow_new_arb_cycle;
wire cf_ctl_any_continuerequest;
wire cf_ctl_arb_counter_enable;
reg [ 2: 0] cf_ctl_arb_share_counter;
wire [ 2: 0] cf_ctl_arb_share_counter_next_value;
wire [ 2: 0] cf_ctl_arb_share_set_values;
wire cf_ctl_arbitration_holdoff_internal;
wire cf_ctl_beginbursttransfer_internal;
wire cf_ctl_begins_xfer;
wire cf_ctl_chipselect_n;
wire [ 1: 0] cf_ctl_counter_load_value;
wire cf_ctl_end_xfer;
wire cf_ctl_firsttransfer;
wire cf_ctl_grant_vector;
wire cf_ctl_in_a_read_cycle;
wire cf_ctl_in_a_write_cycle;
wire cf_ctl_irq_from_sa;
wire cf_ctl_master_qreq_vector;
wire cf_ctl_read_n;
wire [ 31: 0] cf_ctl_readdata_from_sa;
wire cf_ctl_reset_n;
reg cf_ctl_slavearbiterlockenable;
reg [ 1: 0] cf_ctl_wait_counter;
wire cf_ctl_wait_counter_eq_0;
wire cf_ctl_wait_counter_eq_1;
wire cf_ctl_waits_for_read;
wire cf_ctl_waits_for_write;
wire cf_ctl_write_n;
wire [ 31: 0] cf_ctl_writedata;
wire cpu_data_master_arbiterlock;
wire cpu_data_master_continuerequest;
wire cpu_data_master_granted_cf_ctl;
wire cpu_data_master_qualified_request_cf_ctl;
wire cpu_data_master_read_data_valid_cf_ctl;
wire cpu_data_master_requests_cf_ctl;
wire cpu_data_master_saved_grant_cf_ctl;
reg d1_cf_ctl_end_xfer;
reg d1_reasons_to_wait;
wire in_a_read_cycle;
wire in_a_write_cycle;
wire wait_for_cf_ctl_counter;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_reasons_to_wait <= 0;
else if (1)
d1_reasons_to_wait <= ~cf_ctl_end_xfer;
end
assign cf_ctl_begins_xfer = ~d1_reasons_to_wait & ((cpu_data_master_qualified_request_cf_ctl));
assign cpu_data_master_requests_cf_ctl = ({cpu_data_master_address_to_slave[26 : 4] , 4'b0} == 27'h1000040) & (cpu_data_master_read | cpu_data_master_write);
//assign cf_ctl_readdata_from_sa = cf_ctl_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
assign cf_ctl_readdata_from_sa = cf_ctl_readdata;
//cf_ctl_arb_share_counter set values, which is an e_mux
assign cf_ctl_arb_share_set_values = 1;
//cf_ctl_arb_share_counter_next_value assignment, which is an e_assign
assign cf_ctl_arb_share_counter_next_value = cf_ctl_firsttransfer ? (cf_ctl_arb_share_set_values - 1) : |cf_ctl_arb_share_counter ? (cf_ctl_arb_share_counter - 1) : 0;
//cf_ctl_allgrants all slave grants, which is an e_mux
assign cf_ctl_allgrants = |cf_ctl_grant_vector;
//cf_ctl_end_xfer assignment, which is an e_assign
assign cf_ctl_end_xfer = ~(cf_ctl_waits_for_read | cf_ctl_waits_for_write);
//cf_ctl_arb_share_counter arbitration counter enable, which is an e_assign
assign cf_ctl_arb_counter_enable = cf_ctl_end_xfer & cf_ctl_allgrants;
//cf_ctl_arb_share_counter counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cf_ctl_arb_share_counter <= 0;
else if (cf_ctl_arb_counter_enable)
cf_ctl_arb_share_counter <= cf_ctl_arb_share_counter_next_value;
end
//cf_ctl_slavearbiterlockenable slave enables arbiterlock, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cf_ctl_slavearbiterlockenable <= 0;
else if (|cf_ctl_master_qreq_vector & cf_ctl_end_xfer)
cf_ctl_slavearbiterlockenable <= |cf_ctl_arb_share_counter_next_value;
end
//cpu/data_master cf/ctl arbiterlock, which is an e_assign
assign cpu_data_master_arbiterlock = cf_ctl_slavearbiterlockenable & cpu_data_master_continuerequest;
//cf_ctl_any_continuerequest at least one master continues requesting, which is an e_assign
assign cf_ctl_any_continuerequest = 0;
//cpu_data_master_continuerequest continued request, which is an e_assign
assign cpu_data_master_continuerequest = 0;
assign cpu_data_master_qualified_request_cf_ctl = cpu_data_master_requests_cf_ctl;
//cf_ctl_writedata mux, which is an e_mux
assign cf_ctl_writedata = cpu_data_master_writedata;
//master is always granted when requested
assign cpu_data_master_granted_cf_ctl = cpu_data_master_qualified_request_cf_ctl;
//cpu/data_master saved-grant cf/ctl, which is an e_assign
assign cpu_data_master_saved_grant_cf_ctl = cpu_data_master_requests_cf_ctl;
//allow new arb cycle for cf/ctl, which is an e_assign
assign cf_ctl_allow_new_arb_cycle = 1;
//placeholder chosen master
assign cf_ctl_grant_vector = 1;
//placeholder vector of master qualified-requests
assign cf_ctl_master_qreq_vector = 1;
//cf_ctl_reset_n assignment, which is an e_assign
assign cf_ctl_reset_n = reset_n;
assign cf_ctl_chipselect_n = ~cpu_data_master_granted_cf_ctl;
//cf_ctl_firsttransfer first transaction, which is an e_assign
assign cf_ctl_firsttransfer = ~(cf_ctl_slavearbiterlockenable & cf_ctl_any_continuerequest);
//cf_ctl_beginbursttransfer_internal begin burst transfer, which is an e_assign
assign cf_ctl_beginbursttransfer_internal = cf_ctl_begins_xfer & cf_ctl_firsttransfer;
//cf_ctl_arbitration_holdoff_internal arbitration_holdoff, which is an e_assign
assign cf_ctl_arbitration_holdoff_internal = cf_ctl_begins_xfer & cf_ctl_firsttransfer;
//~cf_ctl_read_n assignment, which is an e_mux
assign cf_ctl_read_n = ~(((cpu_data_master_granted_cf_ctl & cpu_data_master_read))& ~cf_ctl_begins_xfer);
//~cf_ctl_write_n assignment, which is an e_mux
assign cf_ctl_write_n = ~(((cpu_data_master_granted_cf_ctl & cpu_data_master_write)) & ~cf_ctl_begins_xfer & (cf_ctl_wait_counter >= 1));
//cf_ctl_address mux, which is an e_mux
assign cf_ctl_address = cpu_data_master_address_to_slave >> 2;
//d1_cf_ctl_end_xfer register, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_cf_ctl_end_xfer <= 1;
else if (1)
d1_cf_ctl_end_xfer <= cf_ctl_end_xfer;
end
//cf_ctl_waits_for_read in a cycle, which is an e_mux
assign cf_ctl_waits_for_read = cf_ctl_in_a_read_cycle & wait_for_cf_ctl_counter;
//cf_ctl_in_a_read_cycle assignment, which is an e_assign
assign cf_ctl_in_a_read_cycle = cpu_data_master_granted_cf_ctl & cpu_data_master_read;
//in_a_read_cycle assignment, which is an e_mux
assign in_a_read_cycle = cf_ctl_in_a_read_cycle;
//cf_ctl_wait_counter_eq_1 assignment, which is an e_assign
assign cf_ctl_wait_counter_eq_1 = cf_ctl_wait_counter == 1;
//cf_ctl_waits_for_write in a cycle, which is an e_mux
assign cf_ctl_waits_for_write = cf_ctl_in_a_write_cycle & wait_for_cf_ctl_counter;
//cf_ctl_in_a_write_cycle assignment, which is an e_assign
assign cf_ctl_in_a_write_cycle = cpu_data_master_granted_cf_ctl & cpu_data_master_write;
//in_a_write_cycle assignment, which is an e_mux
assign in_a_write_cycle = cf_ctl_in_a_write_cycle;
assign cf_ctl_wait_counter_eq_0 = cf_ctl_wait_counter == 0;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cf_ctl_wait_counter <= 0;
else if (1)
cf_ctl_wait_counter <= cf_ctl_counter_load_value;
end
assign cf_ctl_counter_load_value = ((cf_ctl_in_a_write_cycle & cf_ctl_begins_xfer))? 2 :
((cf_ctl_in_a_read_cycle & cf_ctl_begins_xfer))? 1 :
(~cf_ctl_wait_counter_eq_0)? cf_ctl_wait_counter - 1 :
0;
assign wait_for_cf_ctl_counter = cf_ctl_begins_xfer | ~cf_ctl_wait_counter_eq_0;
//assign cf_ctl_irq_from_sa = cf_ctl_irq so that symbol knows where to group signals which may go to master only, which is an e_assign
assign cf_ctl_irq_from_sa = cf_ctl_irq;
// synthesis attribute cf_ctl_arbitrator auto_dissolve FALSE
endmodule
module cf_ide_arbitrator (
// inputs:
cf_ide_irq,
cf_ide_readdata,
clk,
cpu_data_master_address_to_slave,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -