⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 std_2c35.v

📁 这个是基于NIOS II的FPGA平台的一个CF卡的接口模块
💻 V
📖 第 1 页 / 共 5 页
字号:
//megafunction wizard: %Altera SOPC Builder%
//GENERATION: STANDARD
//VERSION: WM1.0


//Legal Notice: (C)2005 Altera Corporation. All rights reserved.  Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors.  Please refer to the applicable
//agreement for further details.

// synthesis translate_off
`timescale 1ns / 100ps
// synthesis translate_on
module button_pio_s1_arbitrator (
                                  // inputs:
                                   button_pio_s1_irq,
                                   button_pio_s1_readdata,
                                   clk,
                                   cpu_data_master_address_to_slave,
                                   cpu_data_master_read,
                                   cpu_data_master_waitrequest,
                                   cpu_data_master_write,
                                   cpu_data_master_writedata,
                                   reset_n,

                                  // outputs:
                                   button_pio_s1_address,
                                   button_pio_s1_chipselect,
                                   button_pio_s1_irq_from_sa,
                                   button_pio_s1_readdata_from_sa,
                                   button_pio_s1_reset_n,
                                   button_pio_s1_write_n,
                                   button_pio_s1_writedata,
                                   cpu_data_master_granted_button_pio_s1,
                                   cpu_data_master_qualified_request_button_pio_s1,
                                   cpu_data_master_read_data_valid_button_pio_s1,
                                   cpu_data_master_requests_button_pio_s1,
                                   d1_button_pio_s1_end_xfer
                                );

  output  [  1: 0] button_pio_s1_address;
  output           button_pio_s1_chipselect;
  output           button_pio_s1_irq_from_sa;
  output  [  3: 0] button_pio_s1_readdata_from_sa;
  output           button_pio_s1_reset_n;
  output           button_pio_s1_write_n;
  output  [  3: 0] button_pio_s1_writedata;
  output           cpu_data_master_granted_button_pio_s1;
  output           cpu_data_master_qualified_request_button_pio_s1;
  output           cpu_data_master_read_data_valid_button_pio_s1;
  output           cpu_data_master_requests_button_pio_s1;
  output           d1_button_pio_s1_end_xfer;
  input            button_pio_s1_irq;
  input   [  3: 0] button_pio_s1_readdata;
  input            clk;
  input   [ 26: 0] cpu_data_master_address_to_slave;
  input            cpu_data_master_read;
  input            cpu_data_master_waitrequest;
  input            cpu_data_master_write;
  input   [ 31: 0] cpu_data_master_writedata;
  input            reset_n;

  wire    [  1: 0] button_pio_s1_address;
  wire             button_pio_s1_allgrants;
  wire             button_pio_s1_allow_new_arb_cycle;
  wire             button_pio_s1_any_continuerequest;
  wire             button_pio_s1_arb_counter_enable;
  reg     [  2: 0] button_pio_s1_arb_share_counter;
  wire    [  2: 0] button_pio_s1_arb_share_counter_next_value;
  wire    [  2: 0] button_pio_s1_arb_share_set_values;
  wire             button_pio_s1_arbitration_holdoff_internal;
  wire             button_pio_s1_beginbursttransfer_internal;
  wire             button_pio_s1_begins_xfer;
  wire             button_pio_s1_chipselect;
  wire             button_pio_s1_end_xfer;
  wire             button_pio_s1_firsttransfer;
  wire             button_pio_s1_grant_vector;
  wire             button_pio_s1_in_a_read_cycle;
  wire             button_pio_s1_in_a_write_cycle;
  wire             button_pio_s1_irq_from_sa;
  wire             button_pio_s1_master_qreq_vector;
  wire    [  3: 0] button_pio_s1_readdata_from_sa;
  wire             button_pio_s1_reset_n;
  reg              button_pio_s1_slavearbiterlockenable;
  wire             button_pio_s1_waits_for_read;
  wire             button_pio_s1_waits_for_write;
  wire             button_pio_s1_write_n;
  wire    [  3: 0] button_pio_s1_writedata;
  wire             cpu_data_master_arbiterlock;
  wire             cpu_data_master_continuerequest;
  wire             cpu_data_master_granted_button_pio_s1;
  wire             cpu_data_master_qualified_request_button_pio_s1;
  wire             cpu_data_master_read_data_valid_button_pio_s1;
  wire             cpu_data_master_requests_button_pio_s1;
  wire             cpu_data_master_saved_grant_button_pio_s1;
  reg              d1_button_pio_s1_end_xfer;
  reg              d1_reasons_to_wait;
  wire             in_a_read_cycle;
  wire             in_a_write_cycle;
  wire             wait_for_button_pio_s1_counter;
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          d1_reasons_to_wait <= 0;
      else if (1)
          d1_reasons_to_wait <= ~button_pio_s1_end_xfer;
    end


  assign button_pio_s1_begins_xfer = ~d1_reasons_to_wait & ((cpu_data_master_qualified_request_button_pio_s1));
  assign cpu_data_master_requests_button_pio_s1 = ({cpu_data_master_address_to_slave[26 : 4] , 4'b0} == 27'h2220860) & (cpu_data_master_read | cpu_data_master_write);
  //assign button_pio_s1_readdata_from_sa = button_pio_s1_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign button_pio_s1_readdata_from_sa = button_pio_s1_readdata;

  //button_pio_s1_arb_share_counter set values, which is an e_mux
  assign button_pio_s1_arb_share_set_values = 1;

  //button_pio_s1_arb_share_counter_next_value assignment, which is an e_assign
  assign button_pio_s1_arb_share_counter_next_value = button_pio_s1_firsttransfer ? (button_pio_s1_arb_share_set_values - 1) : |button_pio_s1_arb_share_counter ? (button_pio_s1_arb_share_counter - 1) : 0;

  //button_pio_s1_allgrants all slave grants, which is an e_mux
  assign button_pio_s1_allgrants = |button_pio_s1_grant_vector;

  //button_pio_s1_end_xfer assignment, which is an e_assign
  assign button_pio_s1_end_xfer = ~(button_pio_s1_waits_for_read | button_pio_s1_waits_for_write);

  //button_pio_s1_arb_share_counter arbitration counter enable, which is an e_assign
  assign button_pio_s1_arb_counter_enable = button_pio_s1_end_xfer & button_pio_s1_allgrants;

  //button_pio_s1_arb_share_counter counter, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          button_pio_s1_arb_share_counter <= 0;
      else if (button_pio_s1_arb_counter_enable)
          button_pio_s1_arb_share_counter <= button_pio_s1_arb_share_counter_next_value;
    end


  //button_pio_s1_slavearbiterlockenable slave enables arbiterlock, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          button_pio_s1_slavearbiterlockenable <= 0;
      else if (|button_pio_s1_master_qreq_vector & button_pio_s1_end_xfer)
          button_pio_s1_slavearbiterlockenable <= |button_pio_s1_arb_share_counter_next_value;
    end


  //cpu/data_master button_pio/s1 arbiterlock, which is an e_assign
  assign cpu_data_master_arbiterlock = button_pio_s1_slavearbiterlockenable & cpu_data_master_continuerequest;

  //button_pio_s1_any_continuerequest at least one master continues requesting, which is an e_assign
  assign button_pio_s1_any_continuerequest = 0;

  //cpu_data_master_continuerequest continued request, which is an e_assign
  assign cpu_data_master_continuerequest = 0;

  assign cpu_data_master_qualified_request_button_pio_s1 = cpu_data_master_requests_button_pio_s1 & ~(((~cpu_data_master_waitrequest) & cpu_data_master_write));
  //button_pio_s1_writedata mux, which is an e_mux
  assign button_pio_s1_writedata = cpu_data_master_writedata;

  //master is always granted when requested
  assign cpu_data_master_granted_button_pio_s1 = cpu_data_master_qualified_request_button_pio_s1;

  //cpu/data_master saved-grant button_pio/s1, which is an e_assign
  assign cpu_data_master_saved_grant_button_pio_s1 = cpu_data_master_requests_button_pio_s1;

  //allow new arb cycle for button_pio/s1, which is an e_assign
  assign button_pio_s1_allow_new_arb_cycle = 1;

  //placeholder chosen master
  assign button_pio_s1_grant_vector = 1;

  //placeholder vector of master qualified-requests
  assign button_pio_s1_master_qreq_vector = 1;

  //button_pio_s1_reset_n assignment, which is an e_assign
  assign button_pio_s1_reset_n = reset_n;

  assign button_pio_s1_chipselect = cpu_data_master_granted_button_pio_s1;
  //button_pio_s1_firsttransfer first transaction, which is an e_assign
  assign button_pio_s1_firsttransfer = ~(button_pio_s1_slavearbiterlockenable & button_pio_s1_any_continuerequest);

  //button_pio_s1_beginbursttransfer_internal begin burst transfer, which is an e_assign
  assign button_pio_s1_beginbursttransfer_internal = button_pio_s1_begins_xfer & button_pio_s1_firsttransfer;

  //button_pio_s1_arbitration_holdoff_internal arbitration_holdoff, which is an e_assign
  assign button_pio_s1_arbitration_holdoff_internal = button_pio_s1_begins_xfer & button_pio_s1_firsttransfer;

  //~button_pio_s1_write_n assignment, which is an e_mux
  assign button_pio_s1_write_n = ~(cpu_data_master_granted_button_pio_s1 & cpu_data_master_write);

  //button_pio_s1_address mux, which is an e_mux
  assign button_pio_s1_address = cpu_data_master_address_to_slave >> 2;

  //d1_button_pio_s1_end_xfer register, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          d1_button_pio_s1_end_xfer <= 1;
      else if (1)
          d1_button_pio_s1_end_xfer <= button_pio_s1_end_xfer;
    end


  //button_pio_s1_waits_for_read in a cycle, which is an e_mux
  assign button_pio_s1_waits_for_read = button_pio_s1_in_a_read_cycle & button_pio_s1_begins_xfer;

  //button_pio_s1_in_a_read_cycle assignment, which is an e_assign
  assign button_pio_s1_in_a_read_cycle = cpu_data_master_granted_button_pio_s1 & cpu_data_master_read;

  //in_a_read_cycle assignment, which is an e_mux
  assign in_a_read_cycle = button_pio_s1_in_a_read_cycle;

  //button_pio_s1_waits_for_write in a cycle, which is an e_mux
  assign button_pio_s1_waits_for_write = button_pio_s1_in_a_write_cycle & 0;

  //button_pio_s1_in_a_write_cycle assignment, which is an e_assign
  assign button_pio_s1_in_a_write_cycle = cpu_data_master_granted_button_pio_s1 & cpu_data_master_write;

  //in_a_write_cycle assignment, which is an e_mux
  assign in_a_write_cycle = button_pio_s1_in_a_write_cycle;

  assign wait_for_button_pio_s1_counter = 0;
  //assign button_pio_s1_irq_from_sa = button_pio_s1_irq so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign button_pio_s1_irq_from_sa = button_pio_s1_irq;


  // synthesis attribute button_pio_s1_arbitrator auto_dissolve FALSE

endmodule


module cf_ctl_arbitrator (
                           // inputs:
                            cf_ctl_irq,
                            cf_ctl_readdata,
                            clk,
                            cpu_data_master_address_to_slave,
                            cpu_data_master_read,
                            cpu_data_master_write,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -