⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 面向对象的模拟退火编程技术.cpp

📁 由于K-均值聚类算法局部最优的特点
💻 CPP
📖 第 1 页 / 共 2 页
字号:
//***********引入库函数

#include "iostream.h"
#include "math.h"
#include "stdlib.h"
#include "iomanip.h"
#include "time.h"
#include "fstream.h"

//*************定义常量
const int TRUE=1;
const int FALSE=0;
const int MarkovLengh=10000;       //最大外循环
const int MaxInnerLoop=10000;      //每一温度,若连续maxinnterloop次逗没有改进,则降温
const int MaxOuterLoop=60;           //最大无改进降温次数,作为模拟退火停止条件
const double CO=0.1;    //初始温度为:co*J,J:表示K均值聚类聚类结果准则函数值
const double DeclineRate=0.95;   //温度下降速率,t=t*DeclineRate
const long MAX=100000;
const int AcceptRate=0.25;       //接受邻域和产生的邻域的比值过大,则强迫降温   
const double ForceDecline=0.9;   //如果监测到温度过高,则要加大降温频率


//************定义全局变量

int DataNum;               //聚类样本数目
int Dimension;             //样本维数
int K;                     //分类数
double *DataSet;            //指向浮点型的指针
int HALT=0;
int Row=3;



//***************************************************************
//  类 GETDATA: 设定全局变量,维数,样本数,和类别数等         ***  
//               随机生成样本或手工输入样本的类               ***
//***************************************************************


class GETDATA{

public:	
	GETDATA();
	void Display();
	void Initial();
	void Input();
	double FRand(double,double);
    double rand1,rand2;          //随机数的高低值

};

GETDATA::GETDATA()
{
	int i,j;
	Dimension=2;
	DataNum=50;
	K=4;
	DataSet=new double[Dimension*DataNum];
	for(i=0;i<DataNum;i++)
	{
		for(j=0;j<Dimension;j++)
			DataSet[i*Dimension+j]=(((double)rand()/(double)RAND_MAX)*100);
	}
} 

//*****************显示当前待聚类的样本(维数,个数,类别数等)

void GETDATA::Display()
{
	int i,j;
		cout<<" 当前样本集如下:"<<endl<<" {"<<endl;
		for(i=0;i<DataNum;i++)
			{
				cout<<" [";
				for(j=0;j<Dimension;j++)
					{
					    cout<<" "<<setw(8)<<DataSet[i*Dimension+j];						
					}
				cout<<" ]  ";
				if((i+1)%Row==0)
					cout<<endl;
		}	
	    cout<<endl<<" }"<<endl;

		cout<<endl<<" 以上实数样本集由计算机在1---100之间随机产,其中:"<<endl;

	cout<<endl<<" 样本维数 Dimension= "<<Dimension<<endl;
	cout<<" 样本数   DataNum= "<<DataNum<<endl;
	cout<<" 类别数   K= "<<K<<endl;
}


//****************输入待聚类样本,包括维数,个数,类别数等

void GETDATA::Input()
{
	char flag;
	int i,j;
	double s=0;
	cout<<endl<<" 请依次输入: 维数  样本数目  类别数"<<endl;
	cout<<endl<<" 维数 Dimension: ";
	cin>>Dimension;
	cout<<endl<<" 样本数目 DataNum: ";
	cin>>DataNum;
	cout<<endl<<" 类别数 K:";
	cin>>K;
	cout<<endl<<" 随机生成数据输入R  人工输入按B: "<<endl;	delete[]DataSet;
	DataSet=new double[Dimension*DataNum];	
	cin>>flag;
	if(flag=='R'||flag=='r')
	{
		cout<<" 输入随机数生成范围(最小值和最大值):"
			<<endl<<" 最小值:";
		cin>>rand1;
		cout<<endl<<" 最大值:";
		cin>>rand2;
		for(i=0;i<DataNum;i++)
		{
			for(j=0;j<Dimension;j++)
				DataSet[i*Dimension+j]=FRand(rand1,rand2);
		}

	}
		else
			if(flag=='H'||flag=='h')
			{
				for(i=0;i<DataNum;i++)
				{
					cout<<endl<<" 请输入第"<<i+1<<" 个样本的"<<Dimension<<" 个分量";
					for(j=0;j<Dimension;j++)
						cin>>DataSet[i*Dimension+j];
				}
			}
			else 
				cout<<endl<<" 非法数据! ";
}

//****************初始化聚类样本

void GETDATA::Initial()
{
	char ch;	
	GETDATA::Display();
	cout<<endl<<" 重新录入样本输入A  开始聚类B: ";
	cin>>ch;
	while(!(ch=='A'||ch=='a')&&!(ch=='B'||ch=='b'))
	{
		cout<<endl<<" 重新录入样本输入A  开始聚类B: ";
		cin>>ch;
	}

	if(ch=='A'||ch=='a')		 
		GETDATA::Input();
}

double GETDATA::FRand(double rand1,double rand2)
{
	return rand1+(double)(((double)rand()/(double)RAND_MAX)*(rand2-rand1));
}




//***********************************************************
// 类SSA:    模拟退火算法的实现                           ***  
//           功能:根据设定的K,DataNum,Dimension等聚类    ***
//***********************************************************

class SAA
{
public:
	struct DataType
	{
	double *data;
	int father;
	double *uncle;
	};

	struct ClusterType
	{
	double *center;
	int sonnum;
	
	};

	SAA();
	void Initialize();
	void KMeans();
	void SA( );
	void DisPlay();


	void GetDataset(DataType *p1,double *p2,int datanum,int dim);
	void GetValue(double *str1,double *str2,int dim);
	int  FindFather(double *p,int k);
	double SquareDistance(double *str1,double *str2,int dim);
	int	Compare(double *p1,double *p2,int dim);
	void NewCenterPlus(ClusterType *p1,int t,double *p2,int dim);
	void NewCenterReduce(ClusterType *p1,int t,double *p2,int dim);
	double MaxFunc();
	void Generate(DataType *p1,ClusterType *c1);
	double Compare(DataType *p1,ClusterType *c1,DataType *p2,ClusterType *c2);
	void CopyStatus(DataType *p1,ClusterType *c1,DataType *p2,ClusterType *c2);			
	int  SecondFather(DataType *p,int t,int k);
	double AimFunction(DataType *q,ClusterType *c);
	double FRand(double ,double);
	void KMeans1();

protected:

double Temp;
//double CO;
//double DeclineRate;
//int MarkovLengh;
//int MaxInnerLoop;
//int MaxOuterLoop;
double AimFunc;

DataType *DataMember, *KResult,*CurrentStatus,*NewStatus;
ClusterType * ClusterMember,*NewCluster,*CurrentCluster;
	 
}; //end of class SAA



//************建立构造函数,初始化保护成员
SAA::SAA()
{	
	int i;
//	DeclineRate=(double)0.9;
//	MarkovLengh=1000;
//	MaxInnerLoop=200;
//	MaxOuterLoop=10;
//	CO=1;

	
	DataMember=new DataType[DataNum];
	ClusterMember=new ClusterType[K];

	for(i=0;i<DataNum;i++)
	{
		DataMember[i].data=new double[Dimension];	

		DataMember[i].uncle=new double[K];
	}	
	for(i=0;i<K;i++)
		ClusterMember[i].center=new double[Dimension];

	GetDataset(DataMember,DataSet,DataNum,Dimension);

			
}//endSAA


//****************初始化参数,及开始搜索状态

void SAA::Initialize( )
{
	
	//K-均值聚类法建立退火聚类的初始状态
//	KMeans();

	 
}

//*******************k-均值法进行聚类
//************接口:数据,数量,维数,类别

void SAA::KMeans()
{
	
	int i,j,M=1;
	int pa,pb,fa;
	ClusterType *OldCluster;	

	//初始化聚类中心

	OldCluster=new ClusterType[K];
	for(i=0;i<K;i++)
	{
	//	cout<<endl<<i+1<<"中心:";
		GetValue(ClusterMember[i].center,DataMember[i].data,Dimension);
		ClusterMember[i].sonnum=1;

		OldCluster[i].center=new double[Dimension];
		GetValue(OldCluster[i].center,ClusterMember[i].center,Dimension);
	}


	for(i=0;i<DataNum;i++)  
	{
//		cout<<endl<<i+1<<": "<<ClusterMember[0].center[0]<<" "<<ClusterMember[1].center[0]<<" son: "<<ClusterMember[0].sonnum;			
		for(j=0;j<K;j++)
		{
			DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);
//			cout<<"   "<<i+1<<"->"<<j+1<<": "<<DataMember[i].uncle[j];   //"类中心 "<<ClusterMember[j].center[0]<<": "<<DataMember[i].uncle[j]<<"  ";
		}
		pa=DataMember[i].father=FindFather(DataMember[i].uncle,K);
		if(i>=K)
		{
//			cout<<endl<<pa<<" 类样本数:"<<ClusterMember[pa].sonnum;
			ClusterMember[pa].sonnum+=1;
//			cout<<endl<<pa<<" 类样本数:"<<ClusterMember[pa].sonnum;
			NewCenterPlus(ClusterMember,pa,DataMember[i].data,Dimension);
//			cout<<endl<<i+1<<"->"<<pa+1<<"类  :"<<ClusterMember[pa].center[0];
			GetValue(OldCluster[pa].center,ClusterMember[pa].center,Dimension);
		} 
	}

	//开始聚类,直到聚类中心不再发生变化。××逐个修改法××
	while(!HALT)
	{
		//一次聚类循环:1.重新归类;2.修改类中心
		for(i=0;i<DataNum;i++)  
		{
//			cout<<endl;
			for(j=0;j<K;j++)
			{
//				cout<<"  D "<<DataMember[i].data[0]<<"  "<<ClusterMember[j].center[0]<<"  ";
				DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);
//              cout<<DataMember[i].data[0]<<"->"<<ClusterMember[0l].center[0]<<" : "<<DataMember[i].uncle[0]<<endl;
//				cout<<i+1<<"->"<<j+1<<" "<<DataMember[i].uncle[j];
			}
			
			fa=DataMember[i].father;

		    if(fa!=FindFather(DataMember[i].uncle,K)&&ClusterMember[fa].sonnum>1)
			{

				pa=DataMember[i].father;
				ClusterMember[pa].sonnum-=1;

				pb=DataMember[i].father=FindFather(DataMember[i].uncle,K);
				ClusterMember[pb].sonnum+=1;

				NewCenterReduce(ClusterMember,pa,DataMember[i].data,Dimension);
				NewCenterPlus(ClusterMember,pb,DataMember[i].data,Dimension);
				
				
/*				cout<<endl<<"*********************"<<M<<" 次聚类:*****************";  //聚一次类输出一次结果
				cout<<endl<<DataMember[i].data[0]<<" in "<<pa+1<<"类 -> "<<pb+1<<"类: ";

				for(t=0;t<K;t++)
				{
					cout<<endl<<" 第 "<<t+1 <<"类中心: "<<ClusterMember[t].center[0]<<"  样本个数:"<<ClusterMember[t].sonnum;
				}

				DisPlay();
				M=M+1;
*/
			}					

		}//endfor 
			
	
		//判断聚类是否完成,HALT=1,停止聚类
		HALT=0;
		for(j=0;j<K;j++)
			if(Compare(OldCluster[j].center,ClusterMember[j].center,Dimension))
				break;
		if(j==K)
			HALT=1;

			
		for(j=0;j<K;j++)
			GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);
	
	}//endwhile

}//end of KMeans



void SAA::KMeans1()
{
	int i,j,M=1;
	int pa,pb,fa;
	ClusterType *OldCluster;	

	//初始化聚类中心

	OldCluster=new ClusterType[K];
	for(i=0;i<K;i++)
		OldCluster[i].center=new double[Dimension];

		for(j=0;j<K;j++)
			GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);

	//开始聚类,直到聚类中心不再发生变化。××逐个修改法××
	while(!HALT)
	{
		//一次聚类循环:1.重新归类;2.修改类中心
		for(i=0;i<DataNum;i++)  
		{
			for(j=0;j<K;j++)
				DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);
			fa=DataMember[i].father;

		    if(fa!=FindFather(DataMember[i].uncle,K)&&ClusterMember[fa].sonnum>1)
			{

				pa=DataMember[i].father;
				ClusterMember[pa].sonnum-=1;

				pb=DataMember[i].father=FindFather(DataMember[i].uncle,K);
				ClusterMember[pb].sonnum+=1;

				NewCenterReduce(ClusterMember,pa,DataMember[i].data,Dimension);
				NewCenterPlus(ClusterMember,pb,DataMember[i].data,Dimension);
			}					

		}//endfor 
			
	
		//判断聚类是否完成,HALT=1,停止聚类
		HALT=0;
		for(j=0;j<K;j++)
			if(Compare(OldCluster[j].center,ClusterMember[j].center,Dimension))
				break;
		if(j==K)
			HALT=1;

			
		for(j=0;j<K;j++)
			GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);
	
	}//endwhile

}

//几个经常需要调用的小函数

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -