A stability analysis is presented for staggered schemes for the governing equations of compressible flow. The method is based on Fourier analysis. The approximate nature of pressure-correction solution methods is taken into account. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved
标签: compressible stability for equations
上传时间: 2016-12-02
上传用户:yph853211
We address the problem of predicting a word from previous words in a sample of text. In particular, we discuss n-gram models based on classes of words. We also discuss several statistical algorithms for assigning words to classes based on the frequency of their co-occurrence with other words. We find that we are able to extract classes that have the flavor of either syntactically based groupings or semantically based groupings, depending on the nature of the underlying statistics.
标签: predicting particular previous address
上传时间: 2016-12-26
上传用户:xfbs821
This document provides guidelines and describes how to easily port S60 2nd Edition C++ applications to S60 3rd Edition. The document has been written based on experiences of porting regular S60 2nd Edition applications, such as the S60 Platform: POP/IMAP Example [4] that can be downloaded from Forum Nokia. Code snippets from the example are shown in Chapter 8, “Application build changes,” and in Appendix A, “Code example." In addition, Appendix B, "Commonly used functions that require capabilities," and Appendix C, "Commonly used interfaces that have been changed or removed," provide useful information on some frequently used functions and interfaces in third-party applications.
标签: application guidelines describes document
上传时间: 2017-01-29
上传用户:wang5829
We analyze, both analytically and numerically, the effectiveness of cloaking an infinite cylinder from observations by electromagnetic waves in three dimensions. We show that, as truncated approximations of the ideal permittivity and permeability tensors tend towards the singular ideal cloaking fields, so that the anisotropy ratio tends to infinity, the D and B fields blow up near the cloaking surface. Since the metamaterials used to implement cloaking are based on effective medium theory, the resulting large variation in D and B will pose a challenge to the suitability of the field averaged characterization of " and 碌. We also consider cloaking with and without the SHS (softand- hard surface) lining, shown in [6] to be theoretically necessary for cloaking in the cylindrical geometry. We demonstrate numerically that cloaking is significantly improved by the SHS lining, with both the far field of the scattered wave significantly reduced and the blow up of D and B prevented.
标签: effectiveness analytically numerically cloaking
上传时间: 2017-03-30
上传用户:zxc23456789
) Compression using huffman code -with a number of bits k per code word -provide huffman table Huffman coding is optimal for a symbol-by-symbol coding with a known input probability distribution.This technique uses a variable-length code table for encoding a source symbol. The table is derived in a particular way based on the estimated probability of occurrence for each possible value of the source symbol .Huffman coding uses a specific method for representing each symbol, resulting in a prefix code that expresses the most common characters using shorter strings of bits than those used for less common source symbols.The Huffman coding is a procedure to generate a binary code tree.
标签: code Compression huffman provide
上传时间: 2017-05-30
上传用户:yuchunhai1990
A design about 8051 (running at 12MHz) based system with 3 7-Seg displays and two buttons to implement the following functions. 1. When press the + button, the display C = A+B. 2. When press the button, the display C = A - B. “A” and “B” are 8-bit inputs when “C” is 9-bit output.
上传时间: 2015-05-05
上传用户:guoxiy
This edition updates and continues the series of books based on the residential courses on radiowave propagation organised by the IEE/IET. The first course was held in 1974, with lectures by H. Page, P. Matthews, D. Parsons, M.W. Gough, P.A. Watson, E. Hickin, T. Pratt, P. Knight, T.B. Jones, P.A. Bradley, B. Burgess and H. Rishbeth.
标签: Propagation Radiowaves edition 3rd of
上传时间: 2020-05-31
上传用户:shancjb
基于TMS320F2812 光伏并网发电模拟装置PROTEL设计原理图+PCB+软件源码+WORD论文文档,硬件采用2层板设计,PROTEL99SE 设计的工程文件,包括完整的原理图和PCB文件,可以做为你的学习设计参考。 摘要:本文实现了一个基于TMS320F2812 DSP芯片的光伏并网发电模拟装置,采用直流稳压源和滑动变阻器来模拟光伏电池。通过TMS320F2812 DSP芯片ADC模块实时采样模拟电网电压的正弦参考信号、光伏电池输出电压、负载电压电流反馈信号等。经过数据处理后,用PWM模块产生实时的SPWM 波,控制MOSFET逆变全桥输出正弦波。本文用PI控制算法实现了输出信号对给定模拟电网电压的正弦参考信号的频率和相位跟踪,用恒定电压法实现了光伏电池最大功率点跟踪(MPPT),从而达到模拟并网的效果。另外本装置还实现了光伏电池输出欠压、负载过流保护功能以及光伏电池输出欠压、过流保护自恢复功能、声光报警功能、孤岛效应的检测、保护与自恢复功能。系统测试结果表明本设计完全满定设计要求。关键词:光伏并网,MPPT,DSP Photovoltaic Grid-connected generation simulator Zhangyuxin,Tantiancheng,Xiewuyang(College of Electrical Engineering, Chongqing University)Abstract: This paper presents a photovoltaic grid-connected generation simulator which is based on TMS320F2812 DSP, with a DC voltage source and a variable resistor to simulate the characteristic of photovoltaic cells. We use the internal AD converter to real-time sampling the referenced grid voltage signal, outputting voltage of photovoltaic, feedback outputting voltage and current signal. The PWM module generates SVPWM according to the calculation of the real-time sampling data, to control the full MOSFET inverter bridge output sine wave. We realized that the output voltage of the simulator can track the frequency and phase of the referenced grid voltage with PI regulation, and the maximum photovoltaic power tracking with constant voltage regulation, thereby achieved the purpose of grid-connected simulation. Additionally, this device has the over-voltage and over-current protection, audible and visual alarm, islanding detecting and protection, and it can recover automatically. The testing shows that our design is feasible.Keywords: Photovoltaic Grid-connected,MPPT,DSP 目录引言 11. 方案论证 11.1. 总体介绍 11.2. 光伏电池模拟装置 11.3. DC-AC逆变桥 11.4. MOSFET驱动电路方案 21.5. 逆变电路的变频控制方案 22. 理论分析与计算 22.1. SPWM产生 22.1.1. 规则采样法 22.1.2. SPWM 脉冲的计算公式 32.1.3. SPWM 脉冲计算公式中的参数计算 32.1.4. TMS320F2812 DSP控制器的事件管理单元 42.1.5. 软件设计方法 62.2. MPPT的控制方法与参数计算 72.3. 同频、同相的控制方法和参数计算 8
标签: tms320f2812 光伏 并网发电 模拟 protel pcb
上传时间: 2021-11-02
上传用户:
STM32 F1系列 MCU ATIUM AD集成库 原理图库 PCB 3D封装库文件,STM32F1XXXXX全系列原理图+PCB封装库文件,共209个器件型号,CSV text has been written to file : STM32 F1.csvLibrary Component Count : 209Name Description----------------------------------------------------------------------------------------------------STM32F100C4T6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C4T7B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100C6T6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C6T6BTR STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, Tape and ReelSTM32F100C6T7B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100C8T6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C8T6BTR STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, Tape and ReelSTM32F100CBT6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100CBT7B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100R4H6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R4T6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R4T6BTR STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100R6H6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R6T6 STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R6T6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R6T6BTR STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, Tape and ReelSTM32F100R8H6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R8T6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R8T6BTR STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100RBH6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100RBH6BTR STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, Tape and ReelSTM32F100RBT6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RBT6BTR STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100RCT6B STM32 ARM-based 32-bit MCU Value Line with 256 kB Flash, 24 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RDT6 STM32 ARM-based 32-bit MCU Value Line with 384 kB Flash, 32 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RDT6B STM32 ARM-based 32-bit MCU Value Line with 384 kB Flash, 32 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RET6 STM32 ARM-based 32-bit MCU Value Line with 512 kB Flash, 32 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RET6B STM32 ARM-based 32-bit MCU Value Line with 512 kB Flash, 32 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-
上传时间: 2022-04-30
上传用户:jiabin
网上的资源,但是么有word形式。想免费分享,但必须有1积分。 FOC主要是通过对电机电流的控制实现对电机转矩(电流)、速度、位置的控制。通常是电流作为最内环,速度是中间环,位置作为最外环。本程序是DSP2812控制永磁同步电机高精度控制代码,根据Uref实际所在的扇区,确定Tx和Ty实际所对应的电压矢量,就可以计算出T1,T2,T3的值;然后再根据Uref所在的扇区画出类似图十三的三相PWM波形,就可以确定T1,T2,T3分别对应到三相A,B,C的哪一个通道,再赋值给对应通道的捕获比较寄存器,就完成了SVPWM算法。适合从事电机控制方面工作的研发人员作为参考学习使用。
上传时间: 2022-07-04
上传用户: