I implement Dijkstra s Single Source Shortest Path, say SSP, algorithm for directed graphs using a simple data structure, say simple scheme, Fibonacci heaps, say F-heap scheme, and Pairing heaps, say P-heap scheme, and measure the relative performance of the three implementations.
标签: implement algorithm Dijkstra Shortest
上传时间: 2014-01-01
上传用户:BIBI
Features a unique program to estimate the power spectral density. The spectrum containing all significant details is calculated from a time series model. Model type as well as model order are determined automatically from the data, using statistical criteria. Robust estimation algorithms and order selection criteria are used to obtain reliable results. Unlike in FFT analysis, where the experimenter has to set the amount of smoothing of the raw FFT, the right level of detail is assessed using the data only.
标签: containing Features estimate spectral
上传时间: 2014-02-09
上传用户:daguda
Aodv for NS-2. A mobile ad-hoc network (MANET) is a kind of wireless ad-hoc network, and is a self-configuring network of mobile routers connected wirelessly. MANET may operate in a standalone fashion, or may be connected to the larger Internet. Many routing protocols have been developed for MANETs over the past few years. This project evaluated three specific MANET routing protocols which are Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET Ondemand routing protocol (DYMO) to better understand the major characteristics of these routing protocols. Different performance aspects were investigated in this project including packet delivery ratio, routing overhead, throughput and average end-to-end delay.
标签: network ad-hoc wireless mobile
上传时间: 2014-01-12
上传用户:zsjzc
These codes require an ASCII input file called input.dat of the following form: Lower Limit on x Upper Limit on x Final Time Pressure for x<0 when t=0 Density for x<0 when t=0 Speed for x<0 when t=0 Pressure for x>0 when t=0 Density for x>0 when t=0 Speed for x>0 when t=0 These codes produce 8 ASCII output files: density.out. Density vs. x entropy.out. Entropy vs. x mach.out. Mach number vs. x massflux.out. Mass flux vs. x pressure.out. Pressure vs. x sound.out. Speed-of-sound vs. x velocity.out. Velocity vs. x waves.out. A description of the solution in terms of the three waves defined in the book (+,-,0).
标签: input following require called
上传时间: 2017-09-21
上传用户:希酱大魔王
A large body of computer-aided techniques has been developed in recent years to assist in the process of modeling, analyzing, and designing communication systems . These computer-aided techniques fall into two categories: formula-based approaches, where the computer is used to evaluate complex formulas, and simulation-based approaches, where the computer is used to simulate the waveforms or signals that flow through the system. The second approach, which involves “waveform”-level simulation (and often incorporates analytical techniques), is the subject of this book. Since performance evaluation and trade off studies are the central issues in the analysis and design of communication systems, we will focus on the use of simulation for evaluating the performance of analog and digital communication systems with the emphasis on digitalcommunication systems.
标签: computer-aided techniques developed assist
上传时间: 2014-01-01
上传用户:541657925
PixelFusion.dsp This file (the project file) contains information at the project level and is used to build a single project or subproject. Other users can share the project (.dsp) file, but they should export the makefiles locally. PixelFusion.h This is the main header file for the application. It includes other project specific headers (including Resource.h) and declares the CPixelFusionApp application class. PixelFusion.cpp This is the main application source file that contains the application class CPixelFusionApp. PixelFusion.rc This is a listing of all of the Microsoft Windows resources that the program uses. It includes the icons, bitmaps, and cursors that are stored in the RES subdirectory. This file can be directly edited in Microsoft Visual C++. PixelFusion.clw This file contains information used by ClassWizard to edit existing classes or add new classes. ClassWizard also uses this file to store information needed to create and edit message maps and dialog data maps and to create prototype member functions.
上传时间: 2015-03-16
上传用户:313777423
水平集代码及文章(李春明):Level Set Evolution Without Re-initialization: A New Variational Formulation
标签: 水平集代码及文章(李春明)
上传时间: 2015-03-16
上传用户:FQ967
EPC 낮은 수준의 리더 프로토콜
上传时间: 2015-06-04
上传用户:gw0214
matlab有限元网格划分程序 DistMesh is a simple MATLAB code for generation of unstructured triangular and tetrahedral meshes. It was developed by Per-Olof Persson (now at UC Berkeley) and Gilbert Strang in the Department of Mathematics at MIT. A detailed description of the program is provided in our SIAM Review paper, see documentation below. One reason that the code is short and simple is that the geometries are specified by Signed Distance Functions. These give the shortest distance from any point in space to the boundary of the domain. The sign is negative inside the region and positive outside. A simple example is the unit circle in 2-D, which has the distance function d=r-1, where r is the distance from the origin. For more complicated geometries the distance function can be computed by interpolation between values on a grid, a common representation for level set methods. For the actual mesh generation, DistMesh uses the Delaunay triangulation routine in MATLAB and tries to optimize the node locations by a force-based smoothing procedure. The topology is regularly updated by Delaunay. The boundary points are only allowed to move tangentially to the boundary by projections using the distance function. This iterative procedure typically results in very well-shaped meshes. Our aim with this code is simplicity, so that everyone can understand the code and modify it according to their needs. The code is not entirely robust (that is, it might not terminate and return a well-shaped mesh), and it is relatively slow. However, our current research shows that these issues can be resolved in an optimized C++ code, and we believe our simple MATLAB code is important for demonstration of the underlying principles. To use the code, simply download it from below and run it from MATLAB. For a quick demonstration, type "meshdemo2d" or "meshdemond". For more details see the documentation.
标签: matlab有限元网格划分程序
上传时间: 2015-08-12
上传用户:凛风拂衣袖
Matlab 画三维立体图形 The aim of geom3d library is to handle and visualize 3D geometric primitives such as points, lines, planes, polyhedra... It provides low-level functions for manipulating 3D geometric primitives, making easier the development of more complex geometric algorithms. Some features of the library are: - creation of various shapes (3D points, 3D lines, planes, polyhedra...) through an intuitive syntax. Ex: createPlane(p1, p2, p3) to create a plane through 3 points. - derivation of new shapes: intersection between 2 planes, intersection between a plane and a line, between a sphere and a line... - functions for 3D polygons and polyhedra. Polyhedra use classical vertex-faces arrays (face array contain indices of vertices), and support faces with any number of vertices. Some basic models are provided (createOctaedron, createCubeoctaedron...), as well as some computation (like faceNormal or centroid) - manipulation of planar transformation. Ex.: ROT = createRotationOx(THETA); P2 = transformPoint3d(P1, ROT); - direct drawing of shapes with specialized functions. Clipping is performed automatically for infinite shapes such as lines or rays. Ex: drawPoint3d([50 50 25; 20 70 10], 'ro'); % draw some points drawLine3d([X0 Y0 Z0 DX DY DZ]); % clip and draw straight line Some functions require the geom2d package. Additional help is provided in geom3d/Contents.m file, as well as summary files like 'points3d.m' or 'lines3d.m'.
标签: Matlab 画三维立体图形
上传时间: 2015-11-02
上传用户:A1321