虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

three-NODE

  • Shop Cart

    An application that adds products to an electronic shopping cart. The application uses three classes: Product, ShoppingCart, and ShoppingCartApplication. Part of the work has been done for you and is provided in the student archive. You will implement the method in ShoppingCartApplication that reads product information from the keyboard and creates a Product object.

    标签: Product ShoppingCart

    上传时间: 2015-11-12

    上传用户:chengzi74

  • wangluo ppt

    最小二乘法曲面拟合,包括C程序及说明文件。对于搞三维重建的有一定帮助-Least squares surface fitting, including the C procedures and documentation. For engaging in three-dimensional reconstruction to some extent help the

    标签: 通信网

    上传时间: 2015-11-28

    上传用户:schhqq

  • 自动导引小车调度(外文)

    Guided vehicles (GVs) are commonly used for the internal transportation of loads in warehouses, production plants and terminals. These guided vehicles can be routed with a variety of vehicle dispatching rules in an attempt to meet performance criteria such as minimizing the average load waiting times. In this research, we use simulation models of three companies to evaluate the performance of several real-time vehicle dispatching rules, in part described in the literature. It appears that there is a clear difference in average load waiting time between the different dispatching rules in the different environments. Simple rules, based on load and vehicle proximity (distance-based) perform best for all cases. The penalty for this is a relatively high maximum load waiting time. A distance-based rule with time truncation, giving more priority to loads that have to wait longer than a time threshold, appears to yield the best possible overall performance. A rule that particularly considers load-waiting time performs poor overall. We also show that using little pre-arrival information of loads leads to a significant improvement in the performance of the dispatching rules without changing their performance ranking.

    标签: Testing and classifying vehicle dispatching rules in three real-world settings

    上传时间: 2016-04-01

    上传用户:五块钱的油条

  • 传感器网络中基于到达时间差有效的凸松弛方法的稳健定位

    We consider the problem of target localization by a network of passive sensors. When an unknown target emits an acoustic or a radio signal, its position can be localized with multiple sensors using the time difference of arrival (TDOA) information. In this paper, we consider the maximum likelihood formulation of this target localization problem and provide efficient convex relaxations for this nonconvex optimization problem.We also propose a formulation for robust target localization in the presence of sensor location errors. Two Cramer-Rao bounds are derived corresponding to situations with and without sensor node location errors. Simulation results confirm the efficiency and superior performance of the convex relaxation approach as compared to the existing least squares based approach when large sensor node location errors are present.

    标签: 传感器网络

    上传时间: 2016-11-27

    上传用户:xxmluo

  • 单链表习题

    链表习题 1. 编程实现链表的基本操作函数。 (1). void CreatList(LinkList &La,int m) //依次输入m个数据,并依次建立各个元素结点,逐个插入到链表尾;建立带表头结点的单链表La; (2). void ListPrint(LinkList La)  //将单链表La的数据元素从表头到表尾依次显示。 (3).void ListInsert (LinkList &L,int i,ElemType e){ //在带头结点的单链表L中第i个数据元素之前插入数据元素e (4). void ListDelete(LinkList &La, int n, ElemType &e) //删除链表的第n个元素,并用e返回其值。 (5). int Search(LinkList L, ElemType x) //在表中查找是否存在某个元素x,如存在则返回x在表中的位置,否则返回0。 (6). int ListLength(LinkList L)    //求链表L的表长 (7). void GetElem(LinkList L, int i, ElemType &e)   //用e返回L中第i个元素的值 链表的结点类型定义及指向结点的指针类型定义可以参照下列代码:    typedef  struct  Node{     ElemType     data;       // 数据域   struct   Node  *next;    // 指针域 }LNode, *LinkList;

    标签: 单链表

    上传时间: 2017-11-15

    上传用户:BIANJIAXIN

  • 单链表习题

    1. 编程实现链表的基本操作函数。 (1). void CreatList(LinkList &La,int m) //依次输入m个数据,并依次建立各个元素结点,逐个插入到链表尾;建立带表头结点的单链表La; (2). void ListPrint(LinkList La)  //将单链表La的数据元素从表头到表尾依次显示。 (3).void ListInsert (LinkList &L,int i,ElemType e){ //在带头结点的单链表L中第i个数据元素之前插入数据元素e (4). void ListDelete(LinkList &La, int n, ElemType &e) //删除链表的第n个元素,并用e返回其值。 (5). int Search(LinkList L, ElemType x) //在表中查找是否存在某个元素x,如存在则返回x在表中的位置,否则返回0。 (6). int ListLength(LinkList L)    //求链表L的表长 (7). void GetElem(LinkList L, int i, ElemType &e)   //用e返回L中第i个元素的值 链表的结点类型定义及指向结点的指针类型定义可以参照下列代码:    typedef  struct  Node{     ElemType     data;       // 数据域   struct   Node  *next;    // 指针域 }LNode, *LinkList;

    标签: 单链表

    上传时间: 2017-11-15

    上传用户:BIANJIAXIN

  • 数据结构实验

    #include <stdio.h>   #include <stdlib.h> ///链式栈      typedef struct node   {       int data;       struct node *next;   }Node,*Linklist;      Linklist Createlist()   {       Linklist p;       Linklist h;       int data1;       scanf("%d",&data1);       if(data1 != 0)       {           h = (Node *)malloc(sizeof(Node));           h->data = data1;           h->next = NULL;       }       else if(data1 == 0)       return NULL;       scanf("%d",&data1);       while(data1 != 0)       {           p = (Node *)malloc(sizeof(Node));           p -> data = data1;           p -> next = h;           h = p;           scanf("%d",&data1);       }       return h;   }      void Outputlist(Node *head)   {       Linklist p;       p = head;       while(p != NULL )       {           printf("%d ",p->data);           p = p->next;       }       printf("\n");   }      void Freelist(Node *head)   {       Node *p;       Node *q = NULL;       p = head;       while(p != NULL)       {           q = p;           p = p->next;           free(q);       }   }      int main()   {       Node *head;       head = Createlist();          Outputlist(head);          Freelist(head);          return 0;   }   2.顺序栈 [cpp] view plain copy #include <iostream>   #include <stdio.h>   #include <stdlib.h> ///顺序栈   #define MaxSize 100      using namespace std;      typedef

    标签: 数据结构 实验

    上传时间: 2018-05-09

    上传用户:123456..

  • 数据结构实验

    #include <iostream> #include <stdio.head> #include <stdlib.head> #include <string.head> #define ElemType int #define max 100 using namespace std; typedef struct node1 { ElemType data; struct node1 *next; }Node1,*LinkList;//链栈 typedef struct { ElemType *base; int top; }SqStack;//顺序栈 typedef struct node2 { ElemType data; struct node2 *next; }Node2,*LinkQueue; typedef struct node22 { LinkQueue front; LinkQueue rear; }*LinkList;//链队列 typedef struct { ElemType *base; int front,rear; }SqQueue;//顺序队列 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 //1.采用链式存储实现栈的初始化、入栈、出栈操作。 LinkList CreateStack()//创建栈 { LinkList top; top=NULL; return top; } bool StackEmpty(LinkList s)//判断栈是否为空,0代表空 { if(s==NULL) return 0; else return 1; } LinkList Pushead(LinkList s,int x)//入栈 { LinkList q,top=s; q=(LinkList)malloc(sizeof(Node1)); q->data=x; q->next=top; top=q; return top; } LinkList Pop(LinkList s,int &e)//出栈 { if(!StackEmpty(s)) { printf("栈为空。"); } else { e=s->data; LinkList p=s; s=s->next; free(p); } return s; } void DisplayStack(LinkList s)//遍历输出栈中元素 { if(!StackEmpty(s)) printf("栈为空。"); else { wheadile(s!=NULL) { cout<<s->data<<" "; s=s->next; } cout<<endl; } } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 //2.采用顺序存储实现栈的初始化、入栈、出栈操作。 int StackEmpty(int t)//判断栈S是否为空 { SqStack.top=t; if (SqStack.top==0) return 0; else return 1; } int InitStack() { SqStack.top=0; return SqStack.top; } int pushead(int t,int e) { SqStack.top=t; SqStack.base[++SqStack.top]=e; return SqStack.top; } int pop(int t,int *e)//出栈 { SqStack.top=t; if(!StackEmpty(SqStack.top)) { printf("栈为空."); return SqStack.top; } *e=SqStack.base[s.top]; SqStack.top--; return SqStack.top; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 //3.采用链式存储实现队列的初始化、入队、出队操作。 LinkList InitQueue()//创建 { LinkList head; head->rear=(LinkQueue)malloc(sizeof(Node)); head->front=head->rear; head->front->next=NULL; return head; } void deleteEle(LinkList head,int &e)//出队 { LinkQueue p; p=head->front->next; e=p->data; head->front->next=p->next; if(head->rear==p) head->rear=head->front; free(p); } void EnQueue(LinkList head,int e)//入队 { LinkQueue p=(LinkQueue)malloc(sizeof(Node)); p->data=e; p->next=NULL; head->rear->next=p; head->rear=p; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //4.采用顺序存储实现循环队列的初始化、入队、出队操作。 bool InitQueue(SqQueue &head)//创建队列 { head.data=(int *)malloc(sizeof(int)); head.front=head.rear=0; return 1; } bool EnQueue(SqQueue &head,int e)//入队 { if((head.rear+1)%MAXQSIZE==head.front) { printf("队列已满\n"); return 0; } head.data[head.rear]=e; head.rear=(head.rear+1)%MAXQSIZE; return 1; } int QueueLengthead(SqQueue &head)//返回队列长度 { return (head.rear-head.front+MAXQSIZE)%MAXQSIZE; } bool deleteEle(SqQueue &head,int &e)//出队 { if(head.front==head.rear) { cout<<"队列为空!"<<endl; return 0; } e=head.data[head.front]; head.front=(head.front+1)%MAXQSIZE; return 1; } int gethead(SqQueue head)//得到队列头元素 { return head.data[head.front]; } int QueueEmpty(SqQueue head)//判断队列是否为空 { if (head.front==head.rear) return 1; else return 0; } void travelQueue(SqQueue head)//遍历输出 { wheadile(head.front!=head.rear) { printf("%d ",head.data[head.front]); head.front=(head.front+1)%MAXQSIZE; } cout<<endl; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 //5.在主函数中设计一个简单的菜单,分别测试上述算法。 int main() { LinkList top=CreateStack(); int x; wheadile(scanf("%d",&x)!=-1) { top=Pushead(top,x); } int e; wheadile(StackEmpty(top)) { top=Pop(top,e); printf("%d ",e); }//以上是链栈的测试 int top=InitStack(); int x; wheadile(cin>>x) top=pushead(top,x); int e; wheadile(StackEmpty(top)) { top=pop(top,&e); printf("%d ",e); }//以上是顺序栈的测试 LinkList Q; Q=InitQueue(); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q,x); } int e; wheadile(Q) { deleteEle(Q,e); printf("%d ",e); }//以上是链队列的测试 SqQueue Q1; InitQueue(Q1); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q1,x); } int e; wheadile(QueueEmpty(Q1)) { deleteEle(Q1,e); printf("%d ",e); } return 0; }

    标签: 数据结构 实验

    上传时间: 2018-05-09

    上传用户:123456..

  • 三相整流器LCL滤波器设计

    Design and Control of an LCL-filter-based three-phase active rectifier  早期的文章

    标签: LCL-filter-based three-phase rectifier control Design active and an of

    上传时间: 2018-05-19

    上传用户:wangweiyaorui

  • nodeJS开发指南

     nodeJS开发指南中文。 本书先介绍Nodej.s,然后通过各种实例讲解Node.js的基本特性,再用案例式教学的方式讲述如何用Node.js进行web开发,等等.. 侵删,只想换点积分。。

    标签: nodeJS 开发指南

    上传时间: 2018-09-18

    上传用户:chunli