虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

systems-Keyword

  • PL2303 USB to Serial Adapter

    The PL2303 USB to Serial adapter is your smart and convenient accessory forconnecting RS-232 serial devices to your USB-equipped Windows host computer. Itprovides a bridge connection with a standard DB 9-pin male serial port connector inone end and a standard Type-A USB plug connector on the other end. You simplyattach the serial device onto the serial port of the cable and plug the USB connectorinto your PC USB port. It allows a simple and easy way of adding serial connectionsto your PC without having to go thru inserting a serial card and traditional portconfiguration.This USB to Serial adapter is ideal for connecting modems, cellular phones, PDAs,digital cameras, card readers and other serial devices to your computer. It providesserial connections up to 1Mbps of data transfer rate. And since USB does not requireany IRQ resource, more devices can be attached to the system without the previoushassles of device and resource conflicts.Finally, the PL-2303 USB to Serial adapter is a fully USB Specification compliantdevice and therefore supports advanced power management such as suspend andresume operations as well as remote wakeup. The PL-2303 USB Serial cable adapteris designed to work on all Windows operating systems.

    标签: Adapter Serial 2303 USB

    上传时间: 2013-11-01

    上传用户:ghostparker

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-13

    上传用户:瓦力瓦力hong

  • 便携式超声系统中的Xilinx器件

    There has long been a need for portable ultrasoundsystems that have good resolution at affordable costpoints. Portable systems enable healthcare providersto use ultrasound in remote locations such asdisaster zones, developing regions, and battlefields,where it was not previously practical to do so.

    标签: Xilinx 便携式 超声系统 器件

    上传时间: 2013-10-26

    上传用户:liulinshan2010

  • 采用TÜV认证的FPGA开发功能安全系统

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System

    标签: FPGA 安全系统

    上传时间: 2013-11-05

    上传用户:维子哥哥

  • WP151 - Xilinx FPGA的System ACE配置解决方案

    Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.

    标签: System Xilinx FPGA 151

    上传时间: 2014-12-28

    上传用户:康郎

  • WP401-FPGA设计的DO-254

    The standard that governs the design of avioniccomponents and systems, DO-254, is one of the mostpoorly understood but widely applicable standardsin the avionic industry. While information on thegeneral aspects of the standard is easy to obtain, thedetails of exactly how to implement the standard aresketchy. And once an entity develops a process thatachieves compliance, the details of how compliancewas achieved become part of the intellectualproperty of that entity. This white paper focuses onthe details of developing a DO-254 compliantprocess for the design of FPGAs.

    标签: FPGA 401 254 WP

    上传时间: 2013-11-12

    上传用户:q123321

  • xilinx Zynq-7000 EPP产品简介

    The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start development simultaneously. 

    标签: xilinx Zynq 7000 EPP

    上传时间: 2013-11-01

    上传用户:dingdingcandy

  • XAPP520将符合2.5V和3.3V I/O标准的7系列FPGA高性能I/O Bank进行连接

    XAPP520将符合2.5V和3.3V I/O标准的7系列FPGA高性能I/O Bank进行连接  The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems

    标签: XAPP FPGA Bank 520

    上传时间: 2013-11-19

    上传用户:yyyyyyyyyy

  • 基于FPGA+DSP模式的智能相机设计

    针对嵌入式机器视觉系统向独立化、智能化发展的要求,介绍了一种嵌入式视觉系统--智能相机。基于对智能相机体系结构、组成模块和图像采集、传输和处理技术的分析,对国内外的几款智能相机进行比较。综合技术发展现状,提出基于FPGA+DSP模式的硬件平台,并提出智能相机的发展方向。分析结果表明,该系统设计可以实现脱离PC运行,完成图像获取与分析,并作出相应输出。 Abstract:  This paper introduced an embedded vision system-intelligent camera ,which was for embedded machine vision systems to an independent and intelligent development requirements. Intelligent camera architecture, component modules and image acquisition, transmission and processing technology were analyzed. After comparing integrated technology development of several intelligent cameras at home and abroad, the paper proposed the hardware platform based on FPGA+DSP models and made clear direction of development of intelligent cameras. On the analysis of the design, the results indicate that the system can run from the PC independently to complete the image acquisition and analysis and give a corresponding output.

    标签: FPGA DSP 模式 智能相机

    上传时间: 2013-10-24

    上传用户:bvdragon

  • SOC验证方法

    Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.

    标签: SOC 验证方法

    上传时间: 2014-01-24

    上传用户:xinhaoshan2016