虫虫首页|资源下载|资源专辑|精品软件
登录|注册

switching

  • I2C slave routines for the 87L

    The 87LPC76X Microcontroller combines in a small package thebenefits of a high-performance microcontroller with on-boardhardware supporting the Inter-Integrated Circuit (I2C) bus interface.The 87LPC76X can be programmed both as an I2C bus master, aslave, or both. An overview of the I2C bus and description of the bussupport hardware in the 87LPC76X microcontrollers appears inapplication note AN464, Using the 87LPC76X Microcontroller as anI2C Bus Master. That application note includes a programmingexample, demonstrating a bus-master code. Here we show anexample of programming the microcontroller as an I2C slave.The code listing demonstrates communications routines for the87LPC76X as a slave on the I2C bus. It compliments the program inAN464 which demonstrates the 87LPC76X as an I2C bus master.One may demonstrate two 87LPC76X devices communicating witheach other on the I2C bus, using the AN464 code in one, and theprogram presented here in the other. The examples presented hereand in AN464 allow the 87LPC76X to be either a master or a slave,but not both. switching between master and slave roles in amultimaster environment is described in application note AN435.The software for a slave on the bus is relatively simple, as theprocessor plays a relatively passive role. It does not initiate bustransfers on its own, but responds to a master initiating thecommunications. This is true whether the slave receives or transmitsdata—transmission takes place only as a response to a busmaster’s request. The slave does not have to worry about arbitrationor about devices which do not acknowledge their address. As theslave is not supposed to take control of the bus, we do not demandit to resolve bus exceptions or “hangups”. If the bus becomesinactive the processor simply withdraws, not interfering with themaster (or masters) on the bus which should (hopefully) try toresolve the situation.

    标签: routines slave I2C 87L

    上传时间: 2013-11-18

    上传用户:shirleyYim

  • 基于DSP与FPGA的多视频通道的切换控制

    为了扩大监控范围,提高资源利用率,降低系统成本,提出了一种多通道视频切换的解决方案。首先从视频信号分离出行场信号,然后根据行场信号由DSP和FPGA产生控制信号,控制多路视频通道之间的切换,从而实现让一个视频处理器同时监控不同场景。实验结果表明,该方案可以在视频监控告警系统中稳定、可靠地实现视频通道的切换。 Abstract:  To expand the scope of monitoring, improve resource utilization, reduce system cost, a multiple video channels signal switching method is pointed out in this paper. First, horizontal sync signal and field sync signal from the video signal are separated, then control signal according to the sync signal by DSP and FPGA is generated to control the switching between multiple video channels. Thus, it achieves to make a video processor to monitor different place. Experimental results show that the method can realize video channel switching reliably, and is applied in the video monitoring warning system successfully.

    标签: FPGA DSP 视频通道 切换控制

    上传时间: 2013-11-09

    上传用户:不懂夜的黑

  • SOC验证方法

    Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.

    标签: SOC 验证方法

    上传时间: 2014-01-24

    上传用户:xinhaoshan2016

  • SOC验证方法

    Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.

    标签: SOC 验证方法

    上传时间: 2013-11-18

    上传用户:m62383408

  • 数字与模拟电路设计技巧

    数字与模拟电路设计技巧IC与LSI的功能大幅提升使得高压电路与电力电路除外,几乎所有的电路都是由半导体组件所构成,虽然半导体组件高速、高频化时会有EMI的困扰,不过为了充分发挥半导体组件应有的性能,电路板设计与封装技术仍具有决定性的影响。 模拟与数字技术的融合由于IC与LSI半导体本身的高速化,同时为了使机器达到正常动作的目的,因此技术上的跨越竞争越来越激烈。虽然构成系统的电路未必有clock设计,但是毫无疑问的是系统的可靠度是建立在电子组件的选用、封装技术、电路设计与成本,以及如何防止噪讯的产生与噪讯外漏等综合考虑。机器小型化、高速化、多功能化使得低频/高频、大功率信号/小功率信号、高输出阻抗/低输出阻抗、大电流/小电流、模拟/数字电路,经常出现在同一个高封装密度电路板,设计者身处如此的环境必需面对前所未有的设计思维挑战,例如高稳定性电路与吵杂(noisy)性电路为邻时,如果未将噪讯入侵高稳定性电路的对策视为设计重点,事后反复的设计变更往往成为无解的梦魇。模拟电路与高速数字电路混合设计也是如此,假设微小模拟信号增幅后再将full scale 5V的模拟信号,利用10bit A/D转换器转换成数字信号,由于分割幅宽祇有4.9mV,因此要正确读取该电压level并非易事,结果造成10bit以上的A/D转换器面临无法顺利运作的窘境。另一典型实例是使用示波器量测某数字电路基板两点相隔10cm的ground电位,理论上ground电位应该是零,然而实际上却可观测到4.9mV数倍甚至数十倍的脉冲噪讯(pulse noise),如果该电位差是由模拟与数字混合电路的grand所造成的话,要测得4.9 mV的信号根本是不可能的事情,也就是说为了使模拟与数字混合电路顺利动作,必需在封装与电路设计有相对的对策,尤其是数字电路switching时,ground vance noise不会入侵analogue ground的防护对策,同时还需充分检讨各电路产生的电流回路(route)与电流大小,依此结果排除各种可能的干扰因素。以上介绍的实例都是设计模拟与数字混合电路时经常遇到的瓶颈,如果是设计12bit以上A/D转换器时,它的困难度会更加复杂。

    标签: 数字 模拟电路 设计技巧

    上传时间: 2014-02-11

    上传用户:wenyuoo

  • 开关电源EMI设计(英文版)

    Integrated EMI/Thermal Design forswitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of Integrated EMI/Thermal Design forswitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.

    标签: EMI 开关电源 英文

    上传时间: 2013-11-16

    上传用户:萍水相逢

  • ATmega8 taillight circuitAn assembly language program that generates 5 different static patterns wit

    ATmega8 taillight circuitAn assembly language program that generates 5 different static patterns with switching from pattern-to-pattern controlled by the depression of one push-button switch (S2).

    标签: taillight circuitAn generates different

    上传时间: 2014-01-12

    上传用户:wanghui2438

  • The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for the cod

    The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for the coding (compression) of natural video images. The new standard [1] will be known as H.264 and also MPEG-4 Part 10, “Advanced Video Coding”. This document introduces the concepts of switching P and I slices, part of the Extended Profile of H.264.

    标签: finalising standard Joint ITU-T

    上传时间: 2013-11-30

    上传用户:kbnswdifs

  • This demonstration shows how a ZigBee coordinator can be set up. This demo allows the Demonstratio

    This demonstration shows how a ZigBee coordinator can be set up. This demo allows the Demonstration Board (PICDEM Z or Explorer 16) to act as either a "switching Load Controller" (e.g. a light) or a "switching Remote Control" (e.g. a switch) as defined by the Home Controls, Lighting profile. It is designed to interact with a second Demonstration board programmed with the Demo RFD project

    标签: This demonstration Demonstratio coordinator

    上传时间: 2014-01-18

    上传用户:dianxin61

  • 第一章:Internetworking 第二章:Internet Protocols 第三章:IP Subnetting and Variable Length Subnet Masks(VLS

    第一章:Internetworking 第二章:Internet Protocols 第三章:IP Subnetting and Variable Length Subnet Masks(VLSM) 第四章:Introduction to the Cisco IOS 第五章:IP路由 第六章:Enhanced IGRP(EIGRP) and Open Shortest Path First(OSPF) 第七章:Layer 2 switching 第八章:Virtual LANs(VLANs) 第九章:Managing a Cisco Interwork 第十章:Managing Traffic with Access Lists 第十一章:Wide Area Networking Protocols

    标签: Internetworking Subnetting Protocols Internet

    上传时间: 2014-01-04

    上传用户:qiao8960