Abstract: Investment in smart meters and smart grid end equipment continues to grow worldwide as countriestry to make their electric delivery systems more efficient. However, as critical as the electric deliveryinfrastructure is, it is normally not secured and thus subject to attack. This article describes the concept oflife-cycle security—the idea that embedded equipment in the smart grid must have security designed into theentire life of the product, even back to the contract manufacturer. We also talk about how life-cycle securityapplies to embedded equipment in the smart grid. Potential threats are discussed, as are potential solutionsto mitigate the risks posed by those threats.
上传时间: 2014-12-24
上传用户:熊少锋
Abstract: There are many things to consider when designing a power supply for a field-programmablegate array (FPGA). These include (but are not limited to) the high number of voltage rails, and thediffering requirements for both sequencing/tracking and the voltage ripple limits. This application noteexplains these and other power-supply considerations that an engineer must think through whendesigning a power supply for an FPGA.
上传时间: 2013-11-12
上传用户:金苑科技
Abstract: A resistive feedback network is often used to set the output voltage of a power supply. A mechanical potentiometer (pot)conveniently solves the problem of adjusting a power supply. For easier automatic calibration, a mechanical pot can be replaced witha digital pot. This application note presents a calibration solution that uses a digital pot, because digipots are smaller, do not movewith age or vibration, and can be recalibrated remotely. This proposed solution reduces the susceptibility of the system to thetolerance of the digital pot's end-to-end resistance, making the solution optimal fordesigners. This application note also explainssome of the equations required to calculate the resistor chain values and to use a digital pot in this way. A spreadsheet withstandard reisistor values is available for easy calculations.
上传时间: 2013-10-31
上传用户:caiguoqing
Abstract: It is critically important that lithium-ion battery stacks have a good battery-management system for monitoring many cellvoltages and cell temperatures. Without that monitoring, thermal runaway can lead to a battery explosion. This design idea presentsa low-power circuit that measures the temperature of up to 12 thermistors. It powers and configures the multiplexers, and also putsthe muxes into shutdown to save power when not measuring temperatures.
上传时间: 2013-10-29
上传用户:xwd2010
Multiple-voltage electronics systems often requirecomplex supply voltage tracking or sequencing, whichif not met, can result in system faults or even permanentfailures in the fi eld. The design diffi culties in meetingthese requirements are often compounded in distributedpowerarchitectures where point-of-load (POL) DC/DCconverters or linear regulators are scattered across PCboard space, sometimes on different board planes. Theproblem is that power supply circuitry is often the lastcircuitry to be designed into the board, and it must beshoehorned into whatever little board real estate is left.Often, a simple, drop-in, fl exible solution is needed tomeet these requirements.
上传时间: 2013-10-08
上传用户:15071087253
Although recent popular attention is focused on LithiumIon batteries, one must not forget that other batterychemistries, such as Nickel Cadmium (NiCd) and NickelMetal Hydride (NiMH) have advantages in rechargeablepower systems. Nickel-based batteries are robust, capableof high discharge rates, have good cycle life, do notrequire special protection circuitry and are less expensivethan Li-Ion. Among the two, NiMH batteries are rapidlyreplacing NiCd because of their higher capacity (40% to50% more) and the environmental concerns of the toxiccadmium contained in NiCd batteries.
上传时间: 2013-11-04
上传用户:qq10538412
As the performance of many handheld devices approachesthat of laptop computers, design complexity also increases.Chief among them is thermal management—how doyou meet increasing performance demands while keepinga compact and small product cool in the user’s hand?For instance, as battery capacities inevitably increase,charge currents will also increase to maintain or improvetheir charge times. Traditional linear regulator-based batterychargers will not be able to meet the charge currentand effi ciency demands necessary to allow a product torun cool. What is needed is a switching-based chargerthat takes just about the same amount of space as a linearsolution—but without the heat.
上传时间: 2013-11-23
上传用户:lu2767
To this day, Power over Ethernet (PoE) continues to gainpopularity in today’s networking world. The 12.95Wdelivered to the Powered Device (PD) input supplied bythe Power Sourcing Equipment (PSE) is a universal supply.Each PD provides its own DC/DC conversion from anominal 48V supply, thus eliminating the need for a correctvoltage wall adapter. However, higher power devicescan not take advantage of standard PoE because of itspower limitations, and must rely on a large wall adapteras their primary supply. The new LTC4268-1 breaks thispower barrier by allowing for power of up to 35W for suchpower-hungry 2-pair PoE applications. The LTC4268-1provides a complete solution by integrating a high powerPD interface control with an isolated fl yback controller.
上传时间: 2014-12-24
上传用户:jasson5678
Handheld designers often grapple with ways to de-bounceand control the on/off pushbutton of portable devices.Traditional de-bounce designs use discrete logic, fl ipflops, resistors and capacitors. Other designs includean onboard microprocessor and discrete comparatorswhich continuously consume battery power. For highvoltage multicell battery applications, a high voltageLDO is needed to drive the low voltage devices. All thisextra circuitry not only increases required board spaceand design complexity, but also drains the battery whenthe handheld device is turned off. Linear Technology addressesthis pushbutton interface challenge with a pairof tiny pushbutton controllers.
上传时间: 2013-11-18
上传用户:ZJX5201314
Avalanche photo diode (APD) receiver modules arewidely used in fi ber optic communication systems. AnAPD module contains the APD and a signal conditioningamplifi er, but is not completely self contained. It stillrequires signifi cant support circuitry including a highvoltage, low noise power supply and a precision currentmonitor to indicate the signal strength. The challenge issqueezing this support circuitry into applications withlimited board space. The LT®3482 addresses this challengeby integrating a monolithic DC/DC step-up converter andan accurate current monitor. The LT3482 can supportup to a 90V APD bias voltage, and the current monitorprovides better than 10% accuracy over four decades ofdynamic range (250nA to 2.5mA).
上传时间: 2014-01-18
上传用户:wenyuoo