7.1 并行接口概述并行接口和串行接口的结构示意图并行接口传输速率高,一般不要求固定格式,但不适合长距离数据传输7.2 可编程并行接口芯片82C55 7.2.1 8255的基本功能 8255具有2个独立的8位I/O口(A口和B口)和2个独立的4位I/O(C口上半部和C口下半部),提供TTL兼容的并行接口。作为输入时提供三态缓冲器功能,作为输出时提供数据锁存功能。其中,A口具有双向传输功能。8255有3种工作方式,方式0、方式1和方式2,能使用无条件、查询和中断等多种数据传送方式完成CPU与I/O设备之间的数据交换。B口和C口的引脚具有达林顿复合晶体管驱动能力,在1.5V时输出1mA电流,适于作输出端口。C口除用做数据口外,当8255工作在方式1和方式2时,C口的部分引脚作为固定的联络信号线。
标签: 并行接口
上传时间: 2013-10-25
上传用户:oooool
有两种方式可以让设备和应用程序之间联系:1. 通过为设备创建的一个符号链;2. 通过输出到一个接口WDM驱动程序建议使用输出到一个接口而不推荐使用创建符号链的方法。这个接口保证PDO的安全,也保证安全地创建一个惟一的、独立于语言的访问设备的方法。一个应用程序使用Win32APIs来调用设备。在某个Win32 APIs和设备对象的分发函数之间存在一个映射关系。获得对设备对象访问的第一步就是打开一个设备对象的句柄。 用符号链打开一个设备的句柄为了打开一个设备,应用程序需要使用CreateFile。如果该设备有一个符号链出口,应用程序可以用下面这个例子的形式打开句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3", GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路径名的前缀“\\.\”告诉系统本调用希望打开一个设备。这个设备必须有一个符号链,以便应用程序能够打开它。有关细节查看有关Kdevice和CreateLink的内容。在上述调用中第一个参数中前缀后的部分就是这个符号链的名字。注意:CreatFile中的第一个参数不是Windows 98/2000中驱动程序(.sys文件)的路径。是到设备对象的符号链。如果使用DriverWizard产生驱动程序,它通常使用类KunitizedName来构成设备的符号链。这意味着符号链名有一个附加的数字,通常是0。例如:如果链接名称的主干是L“TestDevice”那么在CreateFile中的串就该是“\\\\.\\TestDevice0”。如果应用程序需要被覆盖的I/O,第六个参数(Flags)必须或上FILE_FLAG_OVERLAPPED。 使用一个输出接口打开句柄用这种方式打开一个句柄会稍微麻烦一些。DriverWorks库提供两个助手类来使获得对该接口的访问容易一些,这两个类是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass类封装了一个设备信息集,该信息集包含了特殊类中的所有设备接口信息。应用程序能有用CdeviceInterfaceClass类的一个实例来获得一个或更多的CdeviceInterface类的实例。CdeviceInterface类是一个单一设备接口的抽象。它的成员函数DevicePath()返回一个路径名的指针,该指针可以在CreateFile中使用来打开设备。下面用一个小例子来显示这些类最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface( GUID* pClassGuid, DWORD instance, PDWORD pError){ CDeviceInterfaceClass DevClass(pClassGuid, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; CDeviceInterface DevInterface(&DevClass, instance, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; cout << "The device path is " << DevInterface.DevicePath() << endl; HANDLE hDev; hDev = CreateFile( DevInterface.DevicePath(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); if (hDev == INVALID_HANDLE_VALUE) *pError = GetLastError(); return hDev;} 在设备中执行I/O操作一旦应用程序获得一个有效的设备句柄,它就能使用Win32 APIs来产生到设备对象的IRPs。下面的表显示了这种对应关系。Win32 API DRIVER_FUNCTION_xxxIRP_MJ_xxx KDevice subclass member function CreateFile CREATE Create ReadFile READ Read WriteFile WRITE Write DeviceIoControl DEVICE_CONTROL DeviceControl CloseHandle CLOSECLEANUP CloseCleanUp 需要解释一下设备类成员的Close和CleanUp:CreateFile使内核为设备创建一个新的文件对象。这使得多个句柄可以映射同一个文件对象。当这个文件对象的最后一个用户级句柄被撤销后,I/O管理器调用CleanUp。当没有任何用户级和核心级的对文件对象的访问的时候,I/O管理器调用Close。如果被打开的设备不支持指定的功能,则调用相应的Win32将引起错误(无效功能)。以前为Windows95编写的VxD的应用程序代码中可能会在打开设备的时候使用FILE_FLAG_DELETE_ON_CLOSE属性。在Windows NT/2000中,建议不要使用这个属性,因为它将导致没有特权的用户企图打开这个设备,这是不可能成功的。I/O管理器将ReadFile和WriteFile的buff参数转换成IRP域的方法依赖于设备对象的属性。当设备设置DO_DIRECT_IO标志,I/O管理器将buff锁住在存储器中,并且创建了一个存储在IRP中的MDL域。一个设备可以通过调用Kirp::Mdl来存取MDL。当设备设置DO_BUFFERED_IO标志,设备对象分别通过KIrp::BufferedReadDest或 KIrp::BufferedWriteSource为读或写操作获得buff地址。当设备不设置DO_BUFFERED_IO标志也不设置DO_DIRECT_IO,内核设置IRP 的UserBuffer域来对应ReadFile或WriteFile中的buff参数。然而,存储区并没有被锁住而且地址只对调用进程有效。驱动程序可以使用KIrp::UserBuffer来存取IRP域。对于DeviceIoControl调用,buffer参数的转换依赖于特殊的I/O控制代码,它不在设备对象的特性中。宏CTL_CODE(在winioctl.h中定义)用来构造控制代码。这个宏的其中一个参数指明缓冲方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表显示了这些方法和与之对应的能获得输入缓冲与输出缓冲的KIrp中的成员函数:Method Input Buffer Parameter Output Buffer Parameter METHOD_BUFFERED KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代码指明METHOD_BUFFERED,系统分配一个单一的缓冲来作为输入与输出。驱动程序必须在向输出缓冲放数据之前拷贝输入数据。驱动程序通过调用KIrp::IoctlBuffer获得缓冲地址。在完成时,I/O管理器从系统缓冲拷贝数据到提供给Ring 3级调用者使用的缓冲中。驱动程序必须在结束前存储拷贝到IRP的Information成员中的数据个数。如果控制代码不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,则DeviceIoControl的参数呈现不同的含义。参数InputBuffer被拷贝到一个系统缓冲,这个缓冲驱动程序可以通过调用KIrp::IoctlBuffer。参数OutputBuffer被映射到KMemory对象,驱动程序对这个对象的访问通过调用KIrp::Mdl来实现。对于METHOD_OUT_DIRECT,调用者必须有对缓冲的写访问权限。注意,对METHOD_NEITHER,内核只提供虚拟地址;它不会做映射来配置缓冲。虚拟地址只对调用进程有效。这里是一个用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE来定义一个IOCTL代码:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)现在使用一个DeviceIoControl调用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING, NULL, // no input 注意,这里放的是包含有执行操作命令的字符串指针 0, FirmwareRev, //这里是output串指针,存放从驱动程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize, NULL // not overlapped I/O );如果输出缓冲足够大,设备拷贝串到里面并将拷贝的资结束设置到FirmwareRevSize中。在驱动程序中,代码看起来如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){ ULONG fwLength=0; switch ( I.IoctlCode() ) { case IOCTL_MYDEV_GET_FIRMWARE_REV: fwLength = strlen(FIRMWARE_REV)+1; if (I.IoctlOutputBufferSize() >= fwLength) { strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV); I.Information() = fwLength; return I.Complete(STATUS_SUCCESS); } else { } case . . . } }
上传时间: 2013-10-17
上传用户:gai928943
《现代微机原理与接口技术》实验指导书 TPC-H实验台C语言版 1.实验台结构1)I / O 地址译码电路如上图1所示地址空间280H~2BFH共分8条译码输出线:Y0~Y7 其地址分别是280H~287H、288H~28FH、290H~297H、298H~29FH、2A0H~2A7H、2A8H~2AFH、2B0H~2B7H、2B8H~2BFH,8根译码输出线在实验台I/O地址处分别由自锁紧插孔引出供实验选用(见图2)。 2) 总线插孔采用“自锁紧”插座在标有“总线”区引出数据总线D7~D0;地址总线A9~A0,读、写信号IOR、IOW;中断请求信号IRQ ;DMA请求信号DRQ1;DMA响应信号DACK1 及AEN信号,供学生搭试各种接口实验电路使用。3) 时钟电路如图-3所示可以输出1MHZ 2MHZ两种信号供A/D转换器定时器/计数器串行接口实验使用。图34) 逻辑电平开关电路如图-4所示实验台右下方设有8个开关K7~K0,开关拨到“1”位置时开关断开,输出高电平。向下打到“0”位置时开关接通,输出低电平。电路中串接了保护电阻使接口电路不直接同+5V 、GND相连,可有效地防止因误操作误编程损坏集成电路现象。图 4 图 55) L E D 显示电路如图-5所示实验台上设有8个发光二极管及相关驱动电路(输入端L7~L0),当输入信号为“1” 时发光,为“0”时灭6) 七段数码管显示电路如图-6所示实验台上设有两个共阴极七段数码管及驱动电路,段码为同相驱动器,位码为反相驱动器。从段码与位码的驱动器输入端(段码输入端a、b、c、d、e、f、g、dp,位码输入端s1、 s2)输入不同的代码即可显示不同数字或符号。
上传时间: 2013-11-22
上传用户:sssnaxie
微机接口技术试题:《微机接口技术》模拟试题 一、 选择题:(每空1分,共20分)1. CPU与外设之间交换数据常采用 、 、 和 四种方式,PC机键盘接口采用 传送方式。 ⒉ 当进行DMA方式下的写操作时,数据是从 传送到 __中。 ⒊ PC总线、ISA总线和EISA总线的地址线分别为: 、 和 根。 ⒋ 8254定时/计数器内部有 个端口、共有 种工作方式。 ⒌8255的A1和A0引脚分别连接在地址总线的A1和A0,当命令端口的口地址为317H时,则A口、B口、C口的口地址分别为 、 、 。 ⒍ PC微机中最大的中断号是 、最小的中断号是 。 ⒎PC微机中键盘是从8255的 口得到按键数据。 ⒏ 串行通信中传输线上即传输_________,又传输_________。 二、选择题:(每题2分,共10分)⒈ 设串行异步通信每帧数据格式有8个数据位、无校验、一个停止位,若波特率为9600B/S,该方式每秒最多能传送( )个字符。 ① 1200 ② 150 ③ 960 ④ 120 2.输出指令在I/O接口总线上产生正确的命令顺序是( )。① 先发地址码,再发读命令,最后读数据。② 先发读命令、再发地址码,最后读数据。③ 先送地址码,再送数据,最后发写命令。④ 先送地址码,再发写命令、最后送数据。3 使用8254设计定时器,当输入频率为1MHZ并输出频率为100HZ时,该定时器的计数初值为( )。 ① 100 ② 1000 ③ 10000 ④ 其它 4 在PC机中5号中断,它的中断向地址是( )。 ① 0000H:0005H ② 0000H:0010H ③ 0000H:0014H ④ 0000H:0020H 5. 四片8259级联时可提供的中断请求总数为( )。 ① 29个 ② 30个 ③ 31个 ④ 32个 6. 下述总线中,组内都是外设串行总线为( )组。① RS-485、IDE、ISA。② RS-485、IEEE1394、USB。③ RS-485、PCI、IEEE1394。④ USB、SCSI、RS-232。 7. DMA在( )接管总线的控制权。① 申请阶段 ② 响应阶段 ③ 数据传送阶段 ④ 结束阶段 8. 中断服务程序入口地址是( )。 ① 中断向量表的指针 ② 中断向量 ③ 中断向量表 ④ 中断号
上传时间: 2013-11-16
上传用户:xiaoxiang
ICCAVR软件中文使用说明书:一ImageCraft 的ICC AVR 编译器安装1 运行光盘上的SETUP.EXE 程序进行安装方法一a 打开我的电脑b 打开光盘驱动器所对应的盘符c 双击光盘中文件SETUP.EXE 的图标d 按照屏幕提示选定一个安装路径后进行安装方法二a 在开始菜单中选择运行项目b 在运行对话框中填入drive:\setup.exe注意drive 对应你的机器中的光盘驱动器盘符c 按确定键开始安装d 其余同方法一注意按上述方法进行安装后得到的是一个只可以使用30 天的未注册版对正式版用户还要进行第二步的注册才可得到一个无时间限制的正式版ICC AVR 正式版分标准版和专业版在标准版中有一些功能限制如代码的压缩工程和文件的配置检查在标准版中不可以使用
上传时间: 2013-10-23
上传用户:hwl453472107
使用C语言肯定要使用到C编译器,以便把写好的C程序编译为机器码,这样单片机才能执行编写好的程序。KEIL uVISION2是众多单片机应用开发软件中优秀的软件之一,它支持众多不同公司的MCS51架构的芯片,它集编辑,编译,仿真等于一体,同时还支持,PLM,汇编和C语言的程序设计,它的界面和常用的微软VC++的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能。因此很多开发51应用的工程师或普通的单片机爱好者,都对它十分喜欢。 以上简单介绍了KEIL51软件,要使用KEIL51软件,必需先要安装它。KEIL51是一个商业的软件,对于我们这些普通爱好者可以到KEIL中国代理周立功公司的网站上下载一份能编译2K的DEMO版软件,基本可以满足一般的个人学习和小型应用的开发。(安装的方法和普通软件相当这里就不做介绍了) 安装好后,你是不是迫不及待的想建立自己的第一个C程序项目呢?下面就让我们一起来建立一个小程序项目吧。或许你手中还没有一块实验板,甚至没有一块单片机,不过没有关系我们可以通过KEIL软件仿真看到程序运行的结果。 首先当然是运行KEIL51软件。怎么打开?噢,天!那你要从头学电脑了。呵呵,开个玩笑,这个问题我想读者们也不会提的了:P。运行几秒后,出现如图1-1的屏幕。
上传时间: 2013-11-10
上传用户:邶刖
51 单片机C 语言学习杂记学习单片机实在不是件易事,一来要购买高价格的编程器,仿真器,二来要学习编程语言,还有众多种类的单片机选择真是件让人头痛的事。在众多单片机中51 架构的芯片风行很久,学习资料也相对很多,是初学的较好的选择之一。51 的编程语言常用的有二种,一种是汇编语言,一种是C 语言。汇编语言的机器代码生成效率很高但可读性却并不强,复杂一点的程序就更是难读懂,而C 语言在大多数情况下其机器代码生成效率和汇编语言相当,但可读性和可移植性却远远超过汇编语言,而且C 语言还可以嵌入汇编来解决高时效性的代码编写问题。对于开发周期来说,中大型的软件编写用C 语言的开发周期通常要小于汇编语言很多。综合以上C 语言的优点,我在学习时选择了C 语言。以后的教程也只是我在学习过程中的一些学习笔记和随笔,在这里加以整理和修改,希望和大家一起分享,一起交流,一起学习,一起进步。*注:可以肯定的说这个教程只是为初学或入门者准备的,笔者本人也只是菜鸟一只,第一课 建立您的第一个C 项目使用C 语言肯定要使用到C 编译器,以便把写好的C 程序编译为机器码,这样单片机才能执行编写好的程序。KEIL uVISION2 是众多单片机应用开发软件中优秀的软件之一,它支持众多不同公司的MCS51 架构的芯片,它集编辑,编译,仿真等于一体,同时还支持,PLM,汇编和C 语言的程序设计,它的界面和常用的微软VC++的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能。因此很多开发51 应用的工程师或普通的单片机爱好者,都对它十分喜欢。以上简单介绍了KEIL51 软件,要使用KEIL51 软件,必需先要安装它。KEIL51 是一个商业的软件,对于我们这些普通爱好者可以到KEIL 中国代理周立功公司的网站上下载一份能编译2K 的DEMO 版软件,基本可以满足一般的个人学习和小型应用的开发。(安装的方法和普通软件相当这里就不做介绍了)安装好后,您是不是迫不及待的想建立自己的第一个C 程序项目呢?下面就让我们一起来建立一个小程序项目吧。或许您手中还没有一块实验板,甚至没有一块单片机,不过没有关系我们可以通过KEIL 软件仿真看到程序运行的结果。首先当然是运行KEIL51 软件。怎么打开?噢,天!那您要从头学电脑了。呵呵,开个玩笑,这个问题我想读者们也不会提的了:P。运行几秒后,出现如图1-1 的屏幕。
上传时间: 2014-01-23
上传用户:yyyyyyyyyy
单片机的C 语言轻松入门随着单片机开发技术的不断发展,目前已有越来越多的人从普遍使用汇编语言到逐渐使用高级语言开发,其中主要是以C 语言为主,市场上几种常见的单片机均有其C 语言开发环境。这里以最为流行的80C51 单片机为例来学习单片机的C 语言编程技术。本书共分六章,每章一个专题,以一些待完成的任务为中心,围绕该任务介绍C 语言的一些知识,每一个任务都是可以独立完成的,每完成一个任务,都能掌握一定的识,等到所有的任务都完成后,即可以完成C 语言的入门工作。C 语言概述及其开发环境的建立学习一种编程语言,最重要的是建立一个练习环境,边学边练才能学好。Keil 软件是目前最流行开发80C51 系列单片机的软件,Keil 提供了包括C 编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部份组合在一起。在学会使用汇编语言后,学习C 语言编程是一件比较容易的事,我们将通过一系列的实例介绍C 语言编程的方法。图1-1 所示电路图使用89S52 单片机作为主芯片,这种单片机性属于80C51 系列,其内部有8K 的FLASH ROM,可以反复擦写,并有ISP 功能,支持在线下载,非常适于做实验。89S52 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的任务是让接在P1 引脚上的发光二极管按要求发光。
上传时间: 2013-11-04
上传用户:467368609
第1章 数字系统EDA设计概论 第2章 可编程逻辑器件设计方法 第3章 VHDL语言基础 第4章 数字逻辑单元设计 第5章 数字系统高级设计技术(*) 第6章 基于HDL设计输入 第7章 基于原理图设计输入 第8章 设计综合和行为仿真 第9章 设计实现和时序仿真 第10章 设计下载和调试 第11章 数字时钟设计及实现(*) 第12章 通用异步接收发送器设计及实现(*) 第13章 数字电压表设计及实现(*) 第14章 软核处理器PicoBlaze原理及应用(*) 注:带*的内容可根据课时的安排选讲
上传时间: 2014-01-08
上传用户:kao21
100-Gb光传送网(OTN)复用转发器 a. 提供连续数据范围在600 Mbps到14.1 Gbps之间的串行收发器,通过使用方便的部分重新配置功能支持多标准客户侧接口; b. 44个独立发送时钟域,提高了时钟灵活性; c. 收发器集成电信号散射补偿(EDC)功能,可直接驱动光模块(SFP+、SFP、QSFP、CFP); d. 支持下一代光接口的28-Gbps收发器; e. 替代外部压控晶体振荡器(VCXO)的高级fPLL。
上传时间: 2013-11-19
上传用户:zhyiroy