📚 k-Nearest技术资料

📦 资源总数:1149
💻 源代码:164441
k-Nearest邻近算法,作为机器学习中的经典分类与回归技术,广泛应用于模式识别、数据挖掘及信号处理等领域。通过计算样本间的距离来预测未知数据点的类别或值,特别适合于解决复杂非线性问题。无论是图像识别还是异常检测,k-Nearest都能提供高效解决方案。本页面汇集了1149个精选资源,涵盖理论教程、实战案例与开源代码,助力电子工程师深入理解并灵活运用这一强大工具,加速项目开发进程。

🔥 k-Nearest热门资料

查看全部1149个资源 »

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的...

📅 👤 ryb

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的...

📅 👤 TRIFCT

💻 k-Nearest源代码

查看更多 »
📂 k-Nearest资料分类