The XA-S3 is a member of Philips Semiconductors’ XA (eXtended Architecture) family of high performance 16-bit single-chip Microcontrollers. The XA-S3 combines many powerful peripherals on one chip. Therefore, it is suited for general multipurpose high performance embedded control functions.One of the on-chip peripherals is the I2C bus interface. This report describes worked-out driver software (written in C) to program / use the I2C interface of the XA-S3. The driver software, together with a demo program and interface software routines offer the user a quick start in writing a complete I2C - XAS3 system application.
上传时间: 2013-11-10
上传用户:liaofamous
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-Pulse method, and anew On-Board Programming technique (OBP).Quick Pulse programming is a method using a number of devicepins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-Pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-Pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick Pulse method impractical in almost all87C51 family applications.
上传时间: 2013-10-21
上传用户:xiaozhiqban
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
标签: PicoBlaze Create Master Xilinx
上传时间: 2013-11-05
上传用户:a6697238
Abstract: This reference design explains how to power the Xilinx Zynq Extensible Processing Platform (EPP) and peripheral ICs using
上传时间: 2014-01-21
上传用户:haohao
Abstract: This application note discusses the development and deployment of 3G cellular femtocell base stations. The technicalchallenges for last-mile residential connectivity and adding system capacity in dense urban environments are discussed, with 3Gfemtocell base stations as a cost-effective solution. Maxim's 3GPP TS25.104-compliant transceiver solution is presented along withcomplete radio reference designs such as RD2550. For more information on the RD2550, see reference design 5364, "FemtocellRadio Reference Designs Using the MAX2550–MAX2553 Transceivers."
标签: Base-Station Applications Single-Chip Transceiver
上传时间: 2013-11-07
上传用户:songrui
This application note describes how to retrieve user-defined data from Xilinx configurationPROMs (XC18V00 and Platform Flash devices) after the same PROM has configured theFPGA. The method to add user-defined data to the configuration PROM file is also discussed.The reference design described in this application note can be used in any of the followingXilinx FPGA architectures: Spartan™-II, Spartan-IIE, Spartan-3, Virtex™, Virtex-E, Virtex-II,and Virtex-II Pro.
上传时间: 2013-11-11
上传用户:zhouli
This application note contains a reference design consisting of HDL IP and Xilinx AdvancedConfiguration Environment (ACE) software utilities that give designers great flexibility increating in-system programming (ISP) solutions. In-system programming support allowsdesigners to revise existing designs, package the new bitstream programming files with theprovided software utilities, and update the remote system through the JTAG interface using theEmbedded JTAG ACE Player.
上传时间: 2013-11-14
上传用户:JIMMYCB001
This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback clock. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output clock can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or Microblaze™ microprocessor.
上传时间: 2013-10-15
上传用户:euroford
The PPC405 Virtex-4 is a wrapper around the Virtex-4PowerPC™ 405 Processor Block primitive. For detailsregarding the PowerPC 405, see the PowerPC 405 ProcessorBlock Reference Guide.
上传时间: 2014-12-05
上传用户:flg0001
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上传时间: 2013-11-14
上传用户:fdmpy