虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

i-<b>driveR</b>

  • 单片机音乐中音调和节拍的确定方法

    单片机音乐中音调和节拍的确定方法:调号-音乐上指用以确定乐曲主音高度的符号。很明显一个八度就有12个半音。A、B、C、D、E、F、G。经过声学家的研究,全世界都用这些字母来表示固定的音高。比如,A这个音,标准的音高为每秒钟振动440周。 升C调:1=#C,也就是降D调:1=BD;277(频率)升D调:1=#D,也就是降E调:1=BE;311升F调:1=#F,也就是降G调:1=BG;369升G调:1=#G,也就是降A调:1=BA;415升A调:1=#A,也就是降B调:1=BB。466,C 262   #C277   D 294   #D(bE)311  E 330   F 349   #F369   G 392  #G415A 440.    #A466    B 494 所谓1=A,就是说,这首歌曲的“导”要唱得同A一样高,人们也把这首歌曲叫做A调歌曲,或叫“唱A调”。1=C,就是说,这首歌曲的“导”要唱得同C一样高,或者说“这歌曲唱C调”。同样是“导”,不同的调唱起来的高低是不一样的。各调的对应的标准频率为: 单片机演奏音乐时音调和节拍的确定方法 经常看到一些刚学单片机的朋友对单片机演奏音乐比较有兴趣,本人也曾是这样。在此,本人将就这方面的知识做一些简介,但愿能对单片机演奏音乐比较有兴趣而又不知其解的朋友能有所启迪。 一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。 在音乐中所谓“音调”,其实就是我们常说的“音高”。在音乐中常把中央C上方的A音定为标准音高,其频率f=440Hz。当两个声音信号的频率相差一倍时,也即f2=2f1时,则称f2比f1高一个倍频程, 在音乐中1(do)与 ,2(来)与 ……正好相差一个倍频程,在音乐学中称它相差一个八度音。在一个八度音内,有12个半音。以1—i八音区为例, 12个半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。这12个音阶的分度基本上是以对数关系来划分的。如果我们只要知道了这十二个音符的音高,也就是其基本音调的频率,我们就可根据倍频程的关系得到其他音符基本音调的频率。 知道了一个音符的频率后,怎样让单片机发出相应频率的声音呢?一般说来,常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。那么怎样确定一个频率所对应的定时器的定时值呢?以标准音高A为例:   A的频率f = 440 Hz,其对应的周期为:T = 1/ f = 1/440 =2272μs 由上图可知,单片机上对应蜂鸣器的I/O口来回取反的时间应为:t = T/2 = 2272/2 = 1136μs这个时间t也就是单片机上定时器应有的中断触发时间。一般情况下,单片机奏乐时,其定时器为工作方式1,它以振荡器的十二分频信号为计数脉冲。设振荡器频率为f0,则定时器的予置初值由下式来确定:    t = 12 *(TALL – THL)/ f0 式中TALL = 216 = 65536,THL为定时器待确定的计数初值。因此定时器的高低计数器的初值为:     TH = THL / 256 = ( TALL – t* f0/12) / 256    TL = THL % 256 = ( TALL – t* f0/12) %256  将t=1136μs代入上面两式(注意:计算时应将时间和频率的单位换算一致),即可求出标准音高A在单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值为 :    TH440Hz = (65536 – 1136 * 12/12) /256 = FBH    TL440Hz = (65536 – 1136 * 12/12)%256 = 90H根据上面的求解方法,我们就可求出其他音调相应的计数器的予置初值。 音符的节拍我们可以举例来说明。在一张乐谱中,我们经常会看到这样的表达式,如1=C  、1=G …… 等等,这里1=C,1=G表示乐谱的曲调,和我们前面所谈的音调有很大的关联, 、 就是用来表示节拍的。以 为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。比如:      其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。可见,在单片机上控制一个音符唱多长可采用循环延时的方法来实现。首先,我们确定一个基本时长的延时程序,比如说以十六分音符的时长为基本延时时间,那么,对于一个音符,如果它为十六分音符,则只需调用一次延时程序,如果它为八分音符,则只需调用二次延时程序,如果它为四分音符,则只需调用四次延时程序,依次类推。通过上面关于一个音符音调和节拍的确定方法,我们就可以在单片机上实现演奏音乐了。具体的实现方法为:将乐谱中的每个音符的音调及节拍变换成相应的音调参数和节拍参数,将他们做成数据表格,存放在存储器中,通过程序取出一个音符的相关参数,播放该音符,该音符唱完后,接着取出下一个音符的相关参数……,如此直到播放完毕最后一个音符,根据需要也可循环不停地播放整个乐曲。另外,对于乐曲中的休止符,一般将其音调参数设为FFH,FFH,其节拍参数与其他音符的节拍参数确定方法一致,乐曲结束用节拍参数为00H来表示。下面给出部分音符(三个八度音)的频率以及以单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值 : C调音符  频率Hz 262 277 293 311 329 349 370 392 415 440 466 494TH/TL F88B F8F2 F95B F9B7 FA14 FA66 FAB9 FB03 FB4A FB8F FBCF FC0BC调音符 1 1# 2 2# 3 4 4# 5 5# 6 6# 7频率Hz 523 553 586 621 658 697 739 783 830 879 931 987TH/TL FC43 FC78 FCAB FCDB FD08 FD33 FD5B FD81 FDA5 FDC7 FDE7 FE05C调音符  频率Hz 1045 1106 1171 1241 1316 1393 1476 1563 1658 1755 1860 1971TH/TL FB21 FE3C FE55 FE6D FE84 FE99 FEAD FEC0 FE02 FEE3 FEF3 FF02

    标签: 单片机 音调

    上传时间: 2013-10-20

    上传用户:哈哈haha

  • P90CL301 I2C driver routines

    This application note shows how to write an Inter Integrated Circuit bus driver (I²C) for the Philips P90CL301micro-controller.It is not only an example of writing a driver, but it also includes a set of application interface software routines toquickly implement a complete I²C multi-master system application.For specific applications the user will have to make minimal changes in the driver program. Using the drivermeans linking modules to your application software and including a header-file into the application sourceprograms. A small example program of how to use the driver is listed.The driver supports i.a. polled or interrupt driven message handling, slave message transfers and multi-mastersystem applications. Furthermore, it is made suitable for use in conjunction with real time operating systems, likepSOS+.

    标签: routines driver P90 301

    上传时间: 2013-11-23

    上传用户:weixiao99

  • 并行接口

    7.1 并行接口概述并行接口和串行接口的结构示意图并行接口传输速率高,一般不要求固定格式,但不适合长距离数据传输7.2 可编程并行接口芯片82C55     7.2.1  8255的基本功能 8255具有2个独立的8位I/O口(A口和B口)和2个独立的4位I/O(C口上半部和C口下半部),提供TTL兼容的并行接口。作为输入时提供三态缓冲器功能,作为输出时提供数据锁存功能。其中,A口具有双向传输功能。8255有3种工作方式,方式0、方式1和方式2,能使用无条件、查询和中断等多种数据传送方式完成CPU与I/O设备之间的数据交换。B口和C口的引脚具有达林顿复合晶体管驱动能力,在1.5V时输出1mA电流,适于作输出端口。C口除用做数据口外,当8255工作在方式1和方式2时,C口的部分引脚作为固定的联络信号线。

    标签: 并行接口

    上传时间: 2013-10-25

    上传用户:oooool

  • PCB可测性设计布线规则之建议―从源头改善可测率

    P C B 可测性设计布线规则之建议― ― 从源头改善可测率PCB 设计除需考虑功能性与安全性等要求外,亦需考虑可生产与可测试。这里提供可测性设计建议供设计布线工程师参考。1. 每一个铜箔电路支点,至少需要一个可测试点。如无对应的测试点,将可导致与之相关的开短路不可检出,并且与之相连的零件会因无测试点而不可测。2. 双面治具会增加制作成本,且上针板的测试针定位准确度差。所以Layout 时应通过Via Hole 尽可能将测试点放置于同一面。这样就只要做单面治具即可。3. 测试选点优先级:A.测垫(Test Pad) B.通孔(Through Hole) C.零件脚(Component Lead) D.贯穿孔(Via Hole)(未Mask)。而对于零件脚,应以AI 零件脚及其它较细较短脚为优先,较粗或较长的引脚接触性误判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板弯变形,影响测点精准度,制作治具需特殊处理。5. 避免将测点置于SMT 之PAD 上,因SMT 零件会偏移,故不可靠,且易伤及零件。6. 避免使用过长零件脚(>170mil(4.3mm))或过大的孔(直径>1.5mm)为测点。7. 对于电池(Battery)最好预留Jumper,在ICT 测试时能有效隔离电池的影响。8. 定位孔要求:(a) 定位孔(Tooling Hole)直径最好为125mil(3.175mm)及其以上。(b) 每一片PCB 须有2 个定位孔和一个防呆孔(也可说成定位孔,用以预防将PCB反放而导致机器压破板),且孔内不能沾锡。(c) 选择以对角线,距离最远之2 孔为定位孔。(d) 各定位孔(含防呆孔)不应设计成中心对称,即PCB 旋转180 度角后仍能放入PCB,这样,作业员易于反放而致机器压破板)9. 测试点要求:(e) 两测点或测点与预钻孔之中心距不得小于50mil(1.27mm),否则有一测点无法植针。以大于100mil(2.54mm)为佳,其次是75mil(1.905mm)。(f) 测点应离其附近零件(位于同一面者)至少100mil,如为高于3mm 零件,则应至少间距120mil,方便治具制作。(g) 测点应平均分布于PCB 表面,避免局部密度过高,影响治具测试时测试针压力平衡。(h) 测点直径最好能不小于35mil(0.9mm),如在上针板,则最好不小于40mil(1.00mm),圆形、正方形均可。小于0.030”(30mil)之测点需额外加工,以导正目标。(i) 测点的Pad 及Via 不应有防焊漆(Solder Mask)。(j) 测点应离板边或折边至少100mil。(k) 锡点被实践证实是最好的测试探针接触点。因为锡的氧化物较轻且容易刺穿。以锡点作测试点,因接触不良导致误判的机会极少且可延长探针使用寿命。锡点尤其以PCB 光板制作时的喷锡点最佳。PCB 裸铜测点,高温后已氧化,且其硬度高,所以探针接触电阻变化而致测试误判率很高。如果裸铜测点在SMT 时加上锡膏再经回流焊固化为锡点,虽可大幅改善,但因助焊剂或吃锡不完全的缘故,仍会出现较多的接触误判。

    标签: PCB 可测性设计 布线规则

    上传时间: 2014-01-14

    上传用户:cylnpy

  • 驱动程序与应用程序的接口

    有两种方式可以让设备和应用程序之间联系:1. 通过为设备创建的一个符号链;2. 通过输出到一个接口WDM驱动程序建议使用输出到一个接口而不推荐使用创建符号链的方法。这个接口保证PDO的安全,也保证安全地创建一个惟一的、独立于语言的访问设备的方法。一个应用程序使用Win32APIs来调用设备。在某个Win32 APIs和设备对象的分发函数之间存在一个映射关系。获得对设备对象访问的第一步就是打开一个设备对象的句柄。 用符号链打开一个设备的句柄为了打开一个设备,应用程序需要使用CreateFile。如果该设备有一个符号链出口,应用程序可以用下面这个例子的形式打开句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3",  GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ,  NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路径名的前缀“\\.\”告诉系统本调用希望打开一个设备。这个设备必须有一个符号链,以便应用程序能够打开它。有关细节查看有关Kdevice和CreateLink的内容。在上述调用中第一个参数中前缀后的部分就是这个符号链的名字。注意:CreatFile中的第一个参数不是Windows 98/2000中驱动程序(.sys文件)的路径。是到设备对象的符号链。如果使用DriverWizard产生驱动程序,它通常使用类KunitizedName来构成设备的符号链。这意味着符号链名有一个附加的数字,通常是0。例如:如果链接名称的主干是L“TestDevice”那么在CreateFile中的串就该是“\\\\.\\TestDevice0”。如果应用程序需要被覆盖的I/O,第六个参数(Flags)必须或上FILE_FLAG_OVERLAPPED。 使用一个输出接口打开句柄用这种方式打开一个句柄会稍微麻烦一些。DriverWorks库提供两个助手类来使获得对该接口的访问容易一些,这两个类是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass类封装了一个设备信息集,该信息集包含了特殊类中的所有设备接口信息。应用程序能有用CdeviceInterfaceClass类的一个实例来获得一个或更多的CdeviceInterface类的实例。CdeviceInterface类是一个单一设备接口的抽象。它的成员函数DevicePath()返回一个路径名的指针,该指针可以在CreateFile中使用来打开设备。下面用一个小例子来显示这些类最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface(  GUID* pClassGuid,  DWORD instance,  PDWORD pError){  CDeviceInterfaceClass DevClass(pClassGuid, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  CDeviceInterface DevInterface(&DevClass, instance, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  cout << "The device path is "    << DevInterface.DevicePath()    << endl;   HANDLE hDev;  hDev = CreateFile(   DevInterface.DevicePath(),    GENERIC_READ | GENERIC_WRITE,    FILE_SHARE_READ | FILE_SHARE_WRITE,    NULL,    OPEN_EXISTING,    FILE_ATTRIBUTE_NORMAL,    NULL  );  if (hDev == INVALID_HANDLE_VALUE)    *pError = GetLastError();  return hDev;} 在设备中执行I/O操作一旦应用程序获得一个有效的设备句柄,它就能使用Win32 APIs来产生到设备对象的IRPs。下面的表显示了这种对应关系。Win32 API  DRIVER_FUNCTION_xxxIRP_MJ_xxx  KDevice subclass member function CreateFile  CREATE  Create ReadFile  READ  Read WriteFile  WRITE  Write DeviceIoControl  DEVICE_CONTROL  DeviceControl CloseHandle  CLOSECLEANUP  CloseCleanUp 需要解释一下设备类成员的Close和CleanUp:CreateFile使内核为设备创建一个新的文件对象。这使得多个句柄可以映射同一个文件对象。当这个文件对象的最后一个用户级句柄被撤销后,I/O管理器调用CleanUp。当没有任何用户级和核心级的对文件对象的访问的时候,I/O管理器调用Close。如果被打开的设备不支持指定的功能,则调用相应的Win32将引起错误(无效功能)。以前为Windows95编写的VxD的应用程序代码中可能会在打开设备的时候使用FILE_FLAG_DELETE_ON_CLOSE属性。在Windows NT/2000中,建议不要使用这个属性,因为它将导致没有特权的用户企图打开这个设备,这是不可能成功的。I/O管理器将ReadFile和WriteFile的buff参数转换成IRP域的方法依赖于设备对象的属性。当设备设置DO_DIRECT_IO标志,I/O管理器将buff锁住在存储器中,并且创建了一个存储在IRP中的MDL域。一个设备可以通过调用Kirp::Mdl来存取MDL。当设备设置DO_BUFFERED_IO标志,设备对象分别通过KIrp::BufferedReadDest或 KIrp::BufferedWriteSource为读或写操作获得buff地址。当设备不设置DO_BUFFERED_IO标志也不设置DO_DIRECT_IO,内核设置IRP 的UserBuffer域来对应ReadFile或WriteFile中的buff参数。然而,存储区并没有被锁住而且地址只对调用进程有效。驱动程序可以使用KIrp::UserBuffer来存取IRP域。对于DeviceIoControl调用,buffer参数的转换依赖于特殊的I/O控制代码,它不在设备对象的特性中。宏CTL_CODE(在winioctl.h中定义)用来构造控制代码。这个宏的其中一个参数指明缓冲方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表显示了这些方法和与之对应的能获得输入缓冲与输出缓冲的KIrp中的成员函数:Method  Input Buffer Parameter  Output Buffer Parameter METHOD_BUFFERED  KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER  KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代码指明METHOD_BUFFERED,系统分配一个单一的缓冲来作为输入与输出。驱动程序必须在向输出缓冲放数据之前拷贝输入数据。驱动程序通过调用KIrp::IoctlBuffer获得缓冲地址。在完成时,I/O管理器从系统缓冲拷贝数据到提供给Ring 3级调用者使用的缓冲中。驱动程序必须在结束前存储拷贝到IRP的Information成员中的数据个数。如果控制代码不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,则DeviceIoControl的参数呈现不同的含义。参数InputBuffer被拷贝到一个系统缓冲,这个缓冲驱动程序可以通过调用KIrp::IoctlBuffer。参数OutputBuffer被映射到KMemory对象,驱动程序对这个对象的访问通过调用KIrp::Mdl来实现。对于METHOD_OUT_DIRECT,调用者必须有对缓冲的写访问权限。注意,对METHOD_NEITHER,内核只提供虚拟地址;它不会做映射来配置缓冲。虚拟地址只对调用进程有效。这里是一个用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE来定义一个IOCTL代码:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)现在使用一个DeviceIoControl调用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING,  NULL, // no input  注意,这里放的是包含有执行操作命令的字符串指针  0, FirmwareRev,      //这里是output串指针,存放从驱动程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize,  NULL // not overlapped I/O );如果输出缓冲足够大,设备拷贝串到里面并将拷贝的资结束设置到FirmwareRevSize中。在驱动程序中,代码看起来如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){  ULONG fwLength=0;  switch ( I.IoctlCode() )  {    case IOCTL_MYDEV_GET_FIRMWARE_REV:      fwLength = strlen(FIRMWARE_REV)+1;      if (I.IoctlOutputBufferSize() >= fwLength)      {        strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV);        I.Information() = fwLength;         return I.Complete(STATUS_SUCCESS);      }      else      {              }    case . . .   } }

    标签: 驱动程序 应用程序 接口

    上传时间: 2013-10-17

    上传用户:gai928943

  • 实验指导书 (TPC-H实验台C语言版)

    《现代微机原理与接口技术》实验指导书 TPC-H实验台C语言版 1.实验台结构1)I / O 地址译码电路如上图1所示地址空间280H~2BFH共分8条译码输出线:Y0~Y7 其地址分别是280H~287H、288H~28FH、290H~297H、298H~29FH、2A0H~2A7H、2A8H~2AFH、2B0H~2B7H、2B8H~2BFH,8根译码输出线在实验台I/O地址处分别由自锁紧插孔引出供实验选用(见图2)。 2) 总线插孔采用“自锁紧”插座在标有“总线”区引出数据总线D7~D0;地址总线A9~A0,读、写信号IOR、IOW;中断请求信号IRQ ;DMA请求信号DRQ1;DMA响应信号DACK1 及AEN信号,供学生搭试各种接口实验电路使用。3) 时钟电路如图-3所示可以输出1MHZ 2MHZ两种信号供A/D转换器定时器/计数器串行接口实验使用。图34) 逻辑电平开关电路如图-4所示实验台右下方设有8个开关K7~K0,开关拨到“1”位置时开关断开,输出高电平。向下打到“0”位置时开关接通,输出低电平。电路中串接了保护电阻使接口电路不直接同+5V 、GND相连,可有效地防止因误操作误编程损坏集成电路现象。图 4 图 55) L E D 显示电路如图-5所示实验台上设有8个发光二极管及相关驱动电路(输入端L7~L0),当输入信号为“1” 时发光,为“0”时灭6) 七段数码管显示电路如图-6所示实验台上设有两个共阴极七段数码管及驱动电路,段码为同相驱动器,位码为反相驱动器。从段码与位码的驱动器输入端(段码输入端a、b、c、d、e、f、g、dp,位码输入端s1、 s2)输入不同的代码即可显示不同数字或符号。

    标签: TPC-H 实验指导书 C语言 实验台

    上传时间: 2013-11-22

    上传用户:sssnaxie

  • 微型计算机课程设计论文—通用微机发声程序的汇编设计

    微型计算机课程设计论文—通用微机发声程序的汇编设计 本文讲述了在微型计算机中利用可编程时间间隔定时器的通用发声程序设计,重点讲述了程序的发声原理,节拍的产生,按节拍改变的动画程序原理,并以设计一个简单的乐曲评分程序为引子,分析程序设计的细节。关键字:微机 8253 通用发声程序 动画技术 直接写屏 1. 可编程时间间隔定时器8253在通用个人计算机中,有一个可编程时间间隔定时器8253,它能够根据程序提供的计数值和工作方式,产生各种形状和各种频率的计数/定时脉冲,提供给系统各个部件使用。本设计是利用计算机控制发声的原理,编写演奏乐曲的程序。    在8253/54定时器内部有3个独立工作的计数器:计数器0,计数器1和计数器2,每个计数器都分配有一个断口地址,分别为40H,41H和42H.8253/54内部还有一个公用的控制寄存器,端地址为43H.端口地址输入到8253/54的CS,AL,A0端,分别对3个计数器和控制器寻址.     对8353/54编程时,先要设定控制字,以选择计数器,确定工作方式和计数值的格式.每计数器由三个引脚与外部联系,见教材第320页图9-1.CLK为时钟输入端,GATE为门控信号输入端,OUT为计数/定时信号输入端.每个计数器中包含一个16位计数寄存器,这个计数器时以倒计数的方式计数的,也就是说,从计数初值逐次减1,直到减为0为止.     8253/54的三个计数器是分别编程的,在对任一个计数器编程时,必须首先讲控制字节写入控制寄存器.控制字的作用是告诉8253/54选择哪个计数器工作,要求输出什么样的脉冲波形.另外,对8253/54的初始化工作还包括,向选定的计数器输入一个计数初值,因为这个计数值可以是8为的,也可以是16为的,而8253/5的数据总线是8位的,所以要用两条输出指令来写入初值.下面给出8253/54初始化程序段的一个例子,将计数器2设定为方式3,(关于计数器的工作方式参阅教材第325—330页)计数初值为65536.    MOV   AL,10110110B ;选择计数器2,按方式3工作,计数值是二进制格式    OUT   43H,AL      ; j将控制字送入控制寄存器    MOV   AL,0        ;计数初值为0    OUT   42H,AL      ;将计数初值的低字节送入计数器2    OUT   42H,AL      ;将计数初值的高字节送入计数器2    在IBM PC中8253/54的三个时钟端CLK0,CLK1和CLK2的输入频率都是1.1931817MHZ. PC机上的大多数I/O都是由主板上的8255(或8255A)可编程序外围接口芯片(PPI)管理的.关于8255A的结构和工作原理及应用举例参阅教材第340—373页.教材第364页的”PC/XT机中的扬声器接口电路”一节介绍了扬声器的驱动原理,并给出了通用发声程序.本设计正是基于这个原理,通过编程,控制加到扬声器上的信号的频率,奏出乐曲的.2.发声程序的设计下面是能产生频率为f的通用发声程序:MOV      AL, 10110110B   ;8253控制字:通道2,先写低字节,后写高字节        ;方式3,二进制计数OUT      43H, AL                  ;写入控制字MOV      DX, 0012H               ;被除数高位MOV      AX, 35DEH              ;被除数低位 DIV      ID      ;求计数初值n,结果在AX中OUT      42H, AL     ;送出低8位MOV      AL, AHOUT      42H,AL     ;送出高8位IN      AL, 61H     ;读入8255A端口B的内容MOV      AH, AL                  ;保护B口的原状态OR  AL, 03H     ;使B口后两位置1,其余位保留OUT 61H,AL     ;接通扬声器,使它发声

    标签: 微型计算机 发声程序 论文 微机

    上传时间: 2013-10-17

    上传用户:sunjet

  • 8255A可编程并行接口

    并行接口电路:微处理器与I/O设备进行数据传输时均需经过接口电路实现系统与设备互连的匹配。并行接口电路中每个信息位有自己的传输线,一个数据字节各位可并行传送,速度快,控制简单。由于电气特性的限制,传输距离不能太长。8255A是通用的可编程并行接口芯片,功能强,使用灵活。适合一些并行输入/输出设备的使用。8255A并行接口逻辑框图三个独立的8位I/O端口,口A、口B、口C。口A有输入、输出锁存器及输出缓冲器。口B与口C有输入、输出缓冲器及输出锁存器。在实现高级的传输协议时,口C的8条线分为两组,每组4条线,分别作为口A与口B在传输时的控制信号线。口C的8条线可独立进行置1/置0的操作。口A、口B、口C及控制字口共占4个设备号。8255A并行接口的控制字工作模式选择控制字:口A有三种工作模式,口B有二种工作模式。口C独立使用时只有一个工作模式,与口A、口B配合使用时,作为控制信号线。三种工作模式命名为:模式0、模式1及模式2。模式 0 为基本I/O端口,模式1为带选通的I/O端口,模式 2 为带选通的双向I/O端口。口A可工作在三种模式下,口B可工作在模式 0与模式 1下,口C可工作在模式0下或作为控制线配合口A、口B工作。

    标签: 8255A 可编程 并行接口

    上传时间: 2013-11-07

    上传用户:xitai

  • 微机接口技术试题

    微机接口技术试题:《微机接口技术》模拟试题  一、 选择题:(每空1分,共20分)1. CPU与外设之间交换数据常采用        、       、       和        四种方式,PC机键盘接口采用      传送方式。 ⒉ 当进行DMA方式下的写操作时,数据是从       传送到       __中。 ⒊ PC总线、ISA总线和EISA总线的地址线分别为:     、     和     根。 ⒋ 8254定时/计数器内部有     个端口、共有     种工作方式。 ⒌8255的A1和A0引脚分别连接在地址总线的A1和A0,当命令端口的口地址为317H时,则A口、B口、C口的口地址分别为     、     、      。 ⒍ PC微机中最大的中断号是       、最小的中断号是       。 ⒎PC微机中键盘是从8255的       口得到按键数据。 ⒏ 串行通信中传输线上即传输_________,又传输_________。 二、选择题:(每题2分,共10分)⒈ 设串行异步通信每帧数据格式有8个数据位、无校验、一个停止位,若波特率为9600B/S,该方式每秒最多能传送(    )个字符。  ①  1200     ②  150 ③  960          ④  120 2.输出指令在I/O接口总线上产生正确的命令顺序是(    )。① 先发地址码,再发读命令,最后读数据。② 先发读命令、再发地址码,最后读数据。③ 先送地址码,再送数据,最后发写命令。④ 先送地址码,再发写命令、最后送数据。3 使用8254设计定时器,当输入频率为1MHZ并输出频率为100HZ时,该定时器的计数初值为(      )。 ① 100   ② 1000 ③ 10000 ④ 其它 4 在PC机中5号中断,它的中断向地址是(     )。 ① 0000H:0005H   ② 0000H:0010H ③ 0000H:0014H        ④ 0000H:0020H 5. 四片8259级联时可提供的中断请求总数为(      )。 ① 29个  ② 30个  ③ 31个    ④ 32个 6. 下述总线中,组内都是外设串行总线为(   )组。① RS-485、IDE、ISA。② RS-485、IEEE1394、USB。③ RS-485、PCI、IEEE1394。④ USB、SCSI、RS-232。 7. DMA在(  )接管总线的控制权。① 申请阶段  ② 响应阶段 ③ 数据传送阶段   ④ 结束阶段 8. 中断服务程序入口地址是(  )。 ① 中断向量表的指针 ② 中断向量 ③ 中断向量表  ④ 中断号

    标签: 微机 接口技术 试题

    上传时间: 2013-11-16

    上传用户:xiaoxiang

  • pic单片机实用教程(提高篇)

    pic单片机实用教程(提高篇)以介绍PIC16F87X型号单片机为主,并适当兼顾PIC全系列,共分9章,内容包括:存储器;I/O端口的复位功能;定时器/计数器TMR1;定时器TMR2;输入捕捉/输出比较/脉宽调制CCP;模/数转换器ADC;通用同步/异步收发器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特点:通俗易懂、可读性强、系统全面、学练结合、学用并重、实例丰富、习题齐全。<br>本书作为Microchip公司大学计划选择用书,可广泛适用于初步具备电子技术基础和计算机知识基础的学生、教师、单片机爱好者、电子制作爱好者、电器维修人员、电子产品开发设计者、工程技术人员阅读。本教程全书共分2篇,即基础篇和提高篇,分2册出版,以适应不同课时和不同专业的需要,也为教师和读者增加了一种可选方案。 第1章 EEPROM数据存储器和FIASH程序存储器1.1 背景知识1.1.1 通用型半导体存储器的种类和特点1.1.2 PIC单片机内部的程序存储器1.1.3 PIC单片机内部的EEPROM数据存储器1.1.4 PIC16F87X内部EEPROM和FIASH操作方法1.2 与EEPROM相关的寄存器1.3 片内EEPROM数据存储器结构和操作原理1.3.1 从EEPROM中读取数据1.3.2 向EEPROM中烧写数据1.4 与FLASH相关的寄存器1.5 片内FLASH程序存储器结构和操作原理1.5.1 读取FLASH程序存储器1.5.2 烧写FLASH程序存储器1.6 写操作的安全保障措施1.6.1 写入校验方法1.6.2 预防意外写操作的保障措施1.7 EEPROM和FLASH应用举例1.7.1 EEPROM的应用1.7.2 FIASH的应用思考题与练习题第2章 输入/输出端口的复合功能2.1 RA端口2.1.1 与RA端口相关的寄存器2.1.2 电路结构和工作原理2.1.3 编程方法2.2 RB端口2.2.1 与RB端口相关的寄存器2.2.2 电路结构和工作原理2.2.3 编程方法2.3 RC端口2.3.1 与RC端口相关的寄存器2.3.2 电路结构和工作原理2.3.3 编程方法2.4 RD端口2.4.1 与RD端口相关的寄存器2.4.2 电路结构和工作原理2.4.3 编程方法2.5 RE端口2.5.1 与RE端口相关的寄存器2.5.2 电路结构和工作原理2.5.3 编程方法2.6 PSP并行从动端口2.6.1 与PSP端口相关的寄存器2.6.2 电路结构和工作原理2.7 应用举例思考题与练习题第3章 定时器/计数器TMR13.1 定时器/计数器TMR1模块的特性3.2 定时器/计数器TMR1模块相关的寄存器3.3 定时器/计数器TMR1模块的电路结构3.4 定时器/计数器TMR1模块的工作原理3.4.1 禁止TMR1工作3.4.2 定时器工作方式3.4.3 计数器工作方式3.4.4 TMR1寄存器的赋值与复位3.5 定时器/计数器TMR1模块的应用举例思考题与练习题第4章 定时器TMR24.1 定时器TMR2模块的特性4.2 定时器TMR2模块相关的寄存器4.3 定时器TMR2模块的电路结构4.4 定时器TMR2模块的工作原理4.4.1 禁止TMR2工作4.4.2 定时器工作方式4.4.3 寄存器TMR2和PR2以及分频器的复位4.4.4 TMR2模块的初始化编程4.5 定时器TMR2模块的应用举例思考题与练习题第5章 输入捕捉/输出比较/脉宽调制CCP5.1 输入捕捉工作模式5.1.1 输入捕捉摸式相关的寄存器5.1.2 输入捕捉模式的电路结构5.1.3 输入捕捉摸式的工作原理5.1.4 输入捕捉摸式的应用举例5.2 输出比较工作模式5.2.1 输出比较模式相关的寄存器5.2.2 输出比较模式的电路结构5.2.3 输出比较模式的工作原理5.2.4 输出比较模式的应用举例5.3 脉宽调制输出工作模式5.3.1 脉宽调制模式相关的寄存器5.3.2 脉宽调制模式的电路结构5.3.3 脉宽调制模式的工作原理5.3.4 脉定调制模式的应用举例5.4 两个CCP模块之间相互关系思考题与练习题第6章 模/数转换器ADC6.1 背景知识6.1.1 ADC种类与特点6.1.2 ADC器件的工作原理6.2 PIC16F87X片内ADC模块6.2.1 ADC模块相关的寄存器6.2.2 ADC模块结构和操作原理6.2.3 ADC模块操作时间要求6.2.4 特殊情况下的A/D转换6.2.5 ADC模块的转换精度和分辨率6.2.6 ADC模块的内部动作流程和传递函数6.2.7 ADC模块的操作编程6.3 PIC16F87X片内ADC模块的应用举例思考题与练习题第7章 通用同步/异步收发器USART7.1 串行通信的基本概念7.1.1 串行通信的两种基本方式7.1.2 串行通信中数据传送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的码型、编码方式和帧结构7.1.5 串行通信中的检错和纠错方式7.1.6 串行通信组网方式7.1.7 串行通信接口电路和参数7.1.8 串行通信的传输速率7.2 PIC16F87X片内通用同步/异步收发器USART模块7.2.1 与USART模块相关的寄存器7.2.2 USART波特率发生器BRG7.2.3 USART模块的异步工作方式7.2.4 USART模块的同步主控工作方式7.2.5 USART模块的同步从动工作方式7.3 通用同步/异步收发器USART的应用举例思考题与练习题第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知识8.1.1 SPI接口信号描述8.1.2 基于SPI的系统构成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相关的寄存器8.2.2 SPI接口的结构和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的从动方式8.3 SPI接口的应用举例思考题与练习题第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C总线的背景知识9.1.1 名词术语9.1.2 I(平方)C总线的技术特点9.1.3 I(平方)C总线的基本工作原理9.1.4 I(平方)C总线信号时序分析9.1.5 信号传送格式9.1.6 寻址约定9.1.7 技术参数9.1.8 I(平方)C器件与I(平方)C总线的接线方式9.1.9 相兼容的SMBus总线9.2 与I(平方)C总线相关的寄存器9.3 典型信号时序的产生方法9.3.1 波特率发生器9.3.2 启动信号9.3.3 重启动信号9.3.4 应答信号9.3.5 停止信号9.4 被控器通信方式9.4.1 硬件结构9.4.2 被主控器寻址9.4.3 被控器接收——被控接收器9.4.4 被控器发送——被控发送器9.4.5 广播式寻址9.5 主控器通信方式9.5.1 硬件结构9.5.2 主控器发送——主控发送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的总线冲突和总线仲裁9.6.1 发送和应答过程中的总线冲突9.6.2 启动过程中的总线冲突9.6.3 重启动过程中的总线冲突9.6.4 停止过程中的总线冲突9.7 I(平方)C总线的应用举例思考题与练习题附录A 包含文件P16F877.INC附录B 新版宏汇编器MPASM伪指令总表参考文献

    标签: pic 单片机 实用教程

    上传时间: 2013-12-14

    上传用户:xiaoyuer