虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

grid

  • MSADODC.OCX和MSDATGRD.OCX

    Visual Studio 2010中插入ADO Data Control控件和ADO Data grid控件,将MSADODC.OCX和MSDATGRD.OCX放在C:\Windows\System32目录下,然后在VS中注册

    标签: OCX MSDATGRD MSADODC

    上传时间: 2017-07-13

    上传用户:sin216

  • matlab 做地形

    matlab 做模式地形,处理生成grid网格

    标签: matlab 地形

    上传时间: 2018-01-05

    上传用户:tingchong

  • 重力异常正演MATLAB程序

    %球体 close all; G=6.67e-11; R=2;%球体半径 p=4.0;%密度 D=10.0;%深度 M=(4/3)*pi*R^3*p;%质量 x=-20:1:20; g=G*M*D./((x.^2+D^2).^(3/2)); Vxz=-3*G*M*D.*x./((x.^2+D^2).^(5/2)); Vzz=G*M.*(2*D^2-x.^2)./((x.^2+D^2).^(5/2)); Vzzz=3*G*M.*(2*D^2-3.*x.^2)./((x.^2+D^2).^(7/2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距离(m)'); ylabel('重力异常值'); title('球体重力异常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzzz'); grid on %% %水平圆柱体 close all G=6.67e-11; p=10.0;%线密度 D=100.0;%深度 x=-200:1:200; g=G*2*p*D./(x.^2+D^2); Vxz=4*G*p*D.*x./(x.^2+D^2).^2; Vzz=2*G*p.*(D^2-x.^2)./(x.^2+D^2).^2; Vzzz=4*G*p.*(D^2-3.*x.^2)./((x.^2+D^2).^3); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距离(m)'); ylabel('重力异常值'); title('水平圆柱体重力异常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzzz'); grid on %% %垂直台阶 G=6.67e-11; p=4.0;%密度 h1=50.0;%下层深度 h2=40.0;%上层深度 x=-100:1:100; g=G*p.*(pi*(h1-h2)+x.*log((x.^2+h1^2)./(x.^2+h2^2))+2*h1.*atan(x./h1)-2*h2.*atan(x./h2)); Vxz=G*p.*log((h1^2+x.^2)./(h2^2+x.^2)); Vzz=2*G*p.*atan((x.*(h1-h2))./(x.^2+h1*h2)); Vzzz=2*G*p.*x*(h1^2-h2^2)./((h1^2+x.^2).*(x.^2+h2^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距离(m)'); ylabel('重力异常值'); title('垂直台阶重力异常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzzz'); grid on %% %倾斜台阶 G=6.67e-11; p=4.0;%密度 h1=50.0;%下层深度 h2=40.0;%上层深度 a=pi/6;%倾斜角度 x=-500:1:500; g=G*p.*(pi*(h1-h2)+2*h1.*atan((x+h1*cot(a))./h1)-2*h2.*atan((x+h2*cot(a))./h1)+x.*sin(a)^2.*log(((h1+x.*sin(a).*cos(a)).^2+x.^2.*sin(a)^4)./((h2+x.*(sin(a)*cos(a))).^2+x.^2.*sin(a)^4))); Vxz=G*p.*(sin(a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))-2*sin(2*a).*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.^cos(a))./(sin(a).*x)))); Vzz=G*p.*(0.5*sin(2*a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))+2*sin(a)^2.*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.*cos(a))./(x.*sin(a))))); Vzzz=2*G*p*sin(a)^2.*((x+2*h2*cot(a))./((h2*cot(a)+x).^2+h2^2)-(x+2*h1*cot(a))./((h1*cot(a)+x).^2+h1^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距离(m)'); ylabel('重力异常值'); title('倾斜台阶重力异常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzzz'); grid on %% %铅锤柱体 G=6.67e-11; p=4.0;%密度 h1=50.0;%下层深度 h2=40.0;%上层深度 a=3;%半径 x=-500:1:500; g=G*p.*((x+a).*log(((x+a).^2+h1^2)./((x+a).^2+h2^2))-(x-a).*log(((x-a).^2+h1^2)./((x-a).^2+h2^2))+2*h1.*(atan((x+a)./h1)-atan((x-a)./h1))-2*h2.*(atan((x+a)./h2)-atan((x-a)./h2))); Vxz=G*p.*log((((x+a).^2+h1^2).*((x-a).^2+h2^2))./(((x+a).^2+h2^2).*((x-a).^2+h1^2))); Vzz=2*G*p.*(atan(h1./(x+a))-atan(h2./(x+a))-atan(h1./(x-a))+atan(h2./(x-a))); Vzzz=2*G*p.*((x+a)./((x+a).^2+h2^2)-(x+a)./((x+a).^2+h1^2)-(x-a)./((x-a).^2+h2^2)+(x-a)./((x-a).^2+h1^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距离/m') ylabel('重力异常值') title('铅垂柱体重力异常') grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距离(m)'); ylabel('导数值'); title('Vzzz'); grid on

    标签: MATLAB 重力 程序

    上传时间: 2019-05-10

    上传用户:xiajiang

  • R-SLAM--Resilient localization and mapping

    Accurate pose estimation plays an important role in solution of simultaneous localization and mapping (SLAM) problem, required for many robotic applications. This paper presents a new approach called R-SLAM, primarily to overcome systematic and non-systematic odometry errors which are generally caused by uneven floors, unexpected objects on the floor or wheel-slippage due to skidding or fast turns.The hybrid approach presented here combines the strengths of feature based and grid based methods to produce globally consistent high resolution maps within various types of environments.

    标签: localization environments challenging Resilient mapping R-SLAM and in

    上传时间: 2019-09-15

    上传用户:zhudx2007

  • Data+Processing+in+Smart+Cities

    Smart grids provide many benefits for society. Reliability, observability across the energy distribution system and the exchange of information between devices are just some of the features that make Smart grids so attractive. One of the main products of a Smart grid is to data. The amount of data available nowadays increases fast and carries several kinds of information. Smart metres allow engineers to perform multiple measurements and analyse such data. For example, information about consumption, power quality and digital protection, among others, can be extracted. However, the main challenge in extracting information from data arises from the data quality. In fact, many sectors of the society can benefit from such data. Hence, this information needs to be properly stored and readily available. In this chapter, we will address the main concepts involving Technology Information, Data Mining, Big Data and clustering for deploying information on Smart grids.

    标签: Processing Cities Smart Data in

    上传时间: 2020-05-23

    上传用户:shancjb

  • Data+Processing+in+Smart+Cities

    Smart grids provide many benefits for society. Reliability, observability across the energy distribution system and the exchange of information between devices are just some of the features that make Smart grids so attractive. One of the main products of a Smart grid is to data. The amount of data available nowadays increases fast and carries several kinds of information. Smart metres allow engineers to perform multiple measurements and analyse such data. For example, information about consumption, power quality and digital protection, among others, can be extracted. However, the main challenge in extracting information from data arises from the data quality. In fact, many sectors of the society can benefit from such data. Hence, this information needs to be properly stored and readily available. In this chapter, we will address the main concepts involving Technology Information, Data Mining, Big Data and clustering for deploying information on Smart grids.

    标签: Processing Cities Smart Data

    上传时间: 2020-05-25

    上传用户:shancjb

  • HOMEPLUG+AV+AND IEEE 1901

    Broadband powerline communication systems are continuing to gain significant market adoption worldwide for applications ranging from IPTV delivery to the Smart grid. The suite of standards developed by the HomePlug Powerline Alliance plays an important role in the widespread deployment of broadband PLC. To date, more than 100 million HomePlug modems are deployed and these numbers continue to rise.

    标签: HOMEPLUG 1901 IEEE AV

    上传时间: 2020-05-26

    上传用户:shancjb

  • HOMEPLUG+AV+AND

    Broadband powerline communication systems are continuing to gain significant market adoption worldwide for applications ranging from IPTV delivery to the Smart grid. The suite of standards developed by the HomePlug Powerline Alliance plays an important role in the widespread deployment of broadband PLC. To date, more than 100 million HomePlug modems are deployed and these numbers continue to rise.

    标签: HOMEPLUG AND AV

    上传时间: 2020-06-06

    上传用户:shancjb

  • Cognitive+Radio+Networks

    Resource allocation is an important issue in wireless communication networks. In recent decades, cognitive radio technology and cognitive radio-based networks have obtained more and more attention and have been well studied to improve spectrum utilization and to overcomethe problem of spectrum scarcity in future wireless com- munication systems. Many new challenges on resource allocation appear in cogni- tive radio-based networks. In this book, we focus on effective solutions to resource allocation in several important cognitive radio-based networks, including a cogni- tive radio-basedopportunisticspectrum access network, a cognitiveradio-basedcen- tralized network, a cognitive radio-based cellular network, a cognitive radio-based high-speed vehicle network, and a cognitive radio-based smart grid.

    标签: Cognitive Networks Radio

    上传时间: 2020-06-07

    上传用户:shancjb

  • Communication+Networks

    n its Framework and Roadmap for Smart grid Interoperability Standards, the US National Institute of Standards and Technology declares that a twenty-first-century clean energy economy demands a twenty-first-century electric grid. 1 The start of the twenty-first century marked the acceleration of the Smart grid evolution. The goals of this evolution are broad, including the promotion of widespread and distributed deployment of renewable energy sources, increased energy efficiency, peak power reduction, automated demand response, improved reliability, lower energy delivery costs, and consumer participation in energy management.

    标签: Communication Networks

    上传时间: 2020-06-07

    上传用户:shancjb