1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK 2. 下列说法中错误的是 ( ) A. Java语言是编译执行的 B. Java中使用了多进程技术 C. Java的单行注视以//开头 D. Java语言具有很高的安全性 3. 下面不属于Java语言特点的一项是( ) A. 安全性 B. 分布式 C. 移植性 D. 编译执行 4. 下列语句中,正确的项是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上传时间: 2017-01-04
上传用户:netwolf
These are all the utilities you need to generate MPEG-I movies on a UNIX box with full motion video and stereo sound. For more information on this unusual application of Linux, look in the docs directory or go to www.freeyellow.com/members4/heroine
标签: utilities generate MPEG-I movies
上传时间: 2013-12-18
上传用户:onewq
TIMER.ASM ********* [ milindhp@tifrvax.tifr.res.in ] Set Processor configuration word as = 0000 0000 1010 b. a] -MCLR tied to VDD (internally). b] Code protection off. c] WDT disabled. d] Internal RC oscillator [4 MHZ].
标签: configuration Processor milindhp tifrvax
上传时间: 2015-05-24
上传用户:wqxstar
In addition to all the people who contributed to the first edition, we would like to thank the following individuals for their generous help in writing this edition. Very special thanks go to Jory Prather for verifying the code samples as well as fixing them for consistency. Thanks to Dave Thaler, Brian Zill, and Rich Draves for clarifying our IPv6 questions, Mohammad Alam and Rajesh Peddibhotla for help with reliable multicasting, and Jeff Venable for his contributions on the Network Location Awareness functionality. Thanks to Vadim Eydelman for his Winsock expertise. And finally we would like to thank the .NET Application Frameworks team (Lance Olson, Mauro Ottaviani, and Ron Alberda) for their help with our questions about .NET Sockets.
标签: the contributed addition to
上传时间: 2015-12-17
上传用户:dongqiangqiang
The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa. For example, >> project.name = MyProject >> project.id = 1234 >> project.param.a = 3.1415 >> project.param.b = 42 becomes with str=xml_format(project, off ) "<project> <name>MyProject</name> <id>1234</id> <param> <a>3.1415</a> <b>42</b> </param> </project>" On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
标签: converts Toolbox complex logical
上传时间: 2016-02-12
上传用户:a673761058
n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.
标签: Rao-Blackwellised conditional filtering particle
上传时间: 2013-12-17
上传用户:zhaiyanzhong
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: demonstrates sequential Selection Bayesian
上传时间: 2016-04-07
上传用户:lindor
In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.
标签: Rao-Blackwellised conditional filtering particle
上传时间: 2013-12-14
上传用户:小儒尼尼奥
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: sequential reversible algorithm nstrates
上传时间: 2014-01-18
上传用户:康郎