This handbook is a concise guide to architecting, designing, and building J2EE applications. It guides technical architects through the entire J2EE project, including identifying business requirements, performing use-case analysis, doing object and data modeling, and leading a development team through construction. Whether you are about to architect your first J2EE application or are looking for ways to keep your projects on-time and on-budget, you will refer to this handbook again and again.
标签: architecting applications designing handbook
上传时间: 2014-08-06
上传用户:xuan‘nian
编译原理,很有用的源代码printf("所得first集为:") ShowCollect(first) printf("所得follow集为:")
标签: 编译原理
上传时间: 2016-07-14
上传用户:rocwangdp
ll1文法分析,可求first follow 预测一份
上传时间: 2016-07-20
上传用户:gonuiln
用java语言编写的LL(1)文法分析程序,输出first集、follow集和分析表,并对输入串进行预测分析
上传时间: 2014-01-20
上传用户:xiaodu1124
这是一个完整的文法分析器,能识别FIRST、FOLLOW集,还有实验报告!
标签: 分析器
上传时间: 2016-07-28
上传用户:13517191407
特殊函数说明的PDF文档,包括:Bessel Function,marcum Q-function,Hankel Function,Spherical Bessel Function of the First Kind,Confluent Hypergeometric Function of the First Kind
上传时间: 2016-07-30
上传用户:qiao8960
对任意给定的文法G 构造LR(1) 项目集规范族,其中要实现CLOSURE(I)、GO(I,X)、FIRST 集合等。在此基础上, 构造了LR(1)分析表。然后对输入的句子进行语法分析,给出接受或出错报告。 程序采用文件输入输出方式。其中包括两个输入文件:文法grammar.txt,以及 输入串input.txt;两个输出文件:项目集items.txt 和文法的LR(1)分析表 action_table.txt。由于语法分析的结果只给出接受或错误报告,比较简
上传时间: 2016-07-30
上传用户:来茴
用一门面向对象语言建立一个针对LL(1)文法分析构造演示器,输入定义好的文法,进行分析后在内存中建立其存储结构,判断其能用LL(1)文法分析后,建立其分析过程。 为此我们将本任务分解为以下内容: (1)文法的建立; (2)上下文无关文法的判定; (3)消除文法中一切左递归的算法; (4)文法二义性的判定; (5)LL(1)文法的判定; (6)消除直接左递归; (7)消除间接左递归; (8)直接左公因子的改造; (9)间接左公因子的改造; (10)递归子程序的构造; (11)根据布尔矩阵求Follow集; (12)能导出ε的非终结符; (13)根据定义构造First集; (14)根据关系图构造First集; (15)根据定义构造Follow集; (16)根据关系图构造Follow集; (17)Select集的构造; (18)预测分析表的构造; (19)总控程序的构造; (20)语法树的演示; (21)根据总控程序输出语法树; (22)根据布尔矩阵求First集。 我所要完成的任务是 语法树的演示。
上传时间: 2016-07-30
上传用户:kelimu
编译原理课程设计,LL(1)方法,用FIRST()和FOLLOW(),SELECT(),以及预测分析表
标签: 编译原理
上传时间: 2013-12-24
上传用户:hphh
The task of clustering Web sessions is to group Web sessions based on similarity and consists of maximizing the intra- group similarity while minimizing the inter-group similarity. The first and foremost question needed to be considered in clustering W b sessions is how to measure the similarity between Web sessions.However.there are many shortcomings in traditiona1 measurements.This paper introduces a new method for measuring similarities between Web pages that takes into account not only the URL but also the viewing time of the visited web page.Yhen we give a new method to measure the similarity of Web sessions using sequence alignment and the similarity of W eb page access in detail Experiments have proved that our method is valid and e币cient.
标签: sessions clustering similarity Web
上传时间: 2014-01-11
上传用户:songrui