虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

ad采样控制

  • 基于FPGA的多平台虚拟仪器研究设计.rar

    虚拟仪器技术是以传感器、信号测量与处理、微型计算机等技术为基础而形成的一门综合应用技术。目前虚拟仪器大部分是基于PC机,利用PCI等总线技术传输数据,数据卡插拔不便,便携性差。随着嵌入式技术的飞速发展,嵌入式系统平台已经应用到各个领域,而市场上的嵌入式虚拟仪器系统还相当少,各种研究工作才刚刚起步,各种高性能的虚拟仪器和处理系统在现代工业控制和科学研究中已成为必不可少的部分。因此在我国开发具有较高性能、接口灵活、功能多样化、低成本的虚拟仪器装置势在必行。 针对目前虚拟仪器系统发展趋势和特点,采用FPGA技术,进行一种支持多种平台的高速虚拟仪器系统的设计与研究,并针对高速虚拟仪器系统中的一些技术难点提出解决方案。首先进行了系统的总体设计,确定了采用FPGA作为系统的控制核心,并选取了Labview作为PC平台应用程序开发工具,利用USB2.0接口来进行数据传输;同时选取嵌入式处理器S3C2410以及WinCE作为嵌入式系统硬软件平台。随后进行了各个具体模块的设计,在硬件方面,分别设计了前端处理电路,ADC电路以及USB接口电路。在软件方面,进行了FPGA控制程序的设计工作,实现了对各个模块和接口电路的控制功能。在上层应用程序的设计方面,设计了Labview应用程序,实现了波形显示和频谱分析等仪器功能,人机界面良好。在嵌入式平台上面,进行了WinCE下GPIO驱动程序设计,并在上层应用程序中调用驱动来进行数据的读取。为了解决高速ADC与数据缓存器的速度不匹配的问题,提出利用多体交叉式存储器结构的设计方案,并在FPGA内对控制程序进行了设计,对其时序进行了仿真。 最后对系统进行了联合调试工作,利用上层软件对输入波形进行采集。根据调试结果看,该系统对输入信号进行了较好的采样和存储,还原了波形,达到了预期效果。课题研究并且对设计出一种支持多平台的新型虚拟仪器系统,具有性能好、使用灵活,节省成本等特点,具有较高的研究价值和现实意义。

    标签: FPGA 虚拟仪器

    上传时间: 2013-04-24

    上传用户:shwjl

  • 基于FPGA的B型超声成像系统的设计与实现.rar

    便携式B型超声诊断仪具有无创伤、简便易行、相对价廉等优势,在临床中越来越得到广泛的应用。它将超声波技术、微电子技术、计算机技术、机械设计与制造及生物医学工程等技术融合在一起。开展该课题的研究对提高临床诊断能力和促进我国医疗事业的发展具有重要的意义。 便携式B型超声诊断仪由人机交互系统、探头、成像系统、显示系统构成。其基本工作过程是:首先人机交互系统接收到用户通过键盘或鼠标发出的命令,然后成像系统根据命令控制探头发射超声波,并对回波信号处理、合成图像,最后通过显示系统完成图像的显示。 成像系统作为便携式B型超声诊断仪的核心对图像质量有决定性影响,但以前研制的便携式B型超声诊断仪的成像系统在三个方面存在不足:第一、采用的是单片机控制步进电机,控制精度不高,导致成像系统采样不精确;第二、采用的数字扫描变换算法太粗糙,影响超声图像的分辨率;第三、它的CPU多采用的是51系列单片机,测量速度太慢,同时也不便于系统升级和扩展。 针对以上不足,提出了基于FPGA的B型超声成像系统解决方案,采用Altera公司的EP2C5Q208C8芯片实现了步进电机步距角的细分,使电机旋转更匀速,提高了采样精度;提出并采用DSTI-ULA算法(Uniform Ladder Algorithm based on Double Sample and Trilinear Interotation)在FPGA内实现数字扫描变换,提高了图像分辨率;人机交互系统采用S3C2410-AL作为CPU,改善了测量速度和系统的扩展性。 通过对系统硬件电路的设计、制作,软件的编写、调试,结果表明,本文所设计的便携式B型超声成像系统图像分辨率高、测量速度快、体积小、操作方便。本文所设计的便携式B型超声诊断仪可在野外作业和抢险(诸如地震、抗洪)中发挥作用,同时也可在乡村诊所中完成对相关疾病的诊断工作。

    标签: FPGA 超声成像

    上传时间: 2013-05-18

    上传用户:helmos

  • 基于FPGA的数据采集系统研究.rar

    数据采集是信号与信息系统中一个重要的组成部分,也是数字信号处理的关键环节。本论文主要介绍一种基于FPGA的数据采集系统,提出一种由高速A/D转换芯片、高性能FPGA和PCI总线接口组成的数据采集系统方案及其的硬件电路实现方法。该系统利用AD器件对信号进行放大、差分转换和模数转换,利用FPGA设计内部模块和时钟信号来进行电路控制及实现数据缓存、数据传递等功能,最后通过PCI逻辑接口把暂存在FPGA的数据传送到PC主机。FPGA作为采集系统的核心部件,完成了内部数字电路设计,使系统具有很高的可适应性、可扩展性和可调试性。 本论文从研究数据采集的理论出发,重点研究了A/D模数转换、FPGA芯片设计及PCI总结接口设计,完成了系统的各级电路硬件设计,并通过系统仿真验证了系统的可行性。

    标签: FPGA 数据采集 系统研究

    上传时间: 2013-04-24

    上传用户:小杨高1

  • 基于FPGA的LED视频显示控制系统的设计.rar

    LED显示屏是LED点阵模块或者像素单元组成的平面显示屏幕。自从诞生以来,以其亮度高、视角广、寿命长、性价比高的特点,在交通、广告、新闻发布、体育比赛、电子景观等领域得到了广泛应用。 LED显示屏控制器作为控制LED屏显示图像、数据的关键,是整个LED视频显示系统的核心。本文研究的是对全彩色同步LED屏的控制,控制LED屏同步显示在上位机显示系统中某固定位置处的图像。根据已有的LED显示屏及其驱动器的特点,提出了一种可行的方案并进行了设计。系统主要分为两个部分:视频信号的获取,视频信号的处理。 经过分析比较,决定从显卡的DVI接口获得视频源,视频源经过DVI解码芯片TFP401A的解码后,可以获得图像的数字信息,这些信息包括红、绿、蓝三基色的数据以及行同步、场同步、使能等控制信号。这些信号将在视频信号处理模块中被使用。 信号处理模块在接收视频信号源后,对数据进行处理,最后输出数据给驱动电路。在信号处理模块中,采用了可编程逻辑器件FPGA来完成。可编程逻辑器件具有高集成度、高速度、高可靠性、在线可编程(ISP)等特点,所以特别适合于本设计。利用FPGA的可编程性,在FPGA内部划分了各个小模块,各小模块中通过少量的信号进行联系,这样就将比较大的系统转化成许多小的系统,使得设计更加简单,容易验证。本文分析了驱动电路所需要的数据的特点,全彩色灰度级的实现方式,决定把系统划分为视频源截取、RGB格式转化、位平面分离、读SRAM地址发生器、写SRAM地址发生器、读写SRAM选择控制器、灰度实现等模块。 最后利用示波器和SignalTap II逻辑分析仪等工具,对系统进行了联合调试。改进了时序、优化了布局布线,使得系统性能得到了良好的改善。 在分析了所需要的资源的基础上,课题决定采用Altera的Cyclone EP1C12 FPGA设计视频信号处理模块,在Quartus II和modelsim平台下,用Verilog HDL语言开发。

    标签: FPGA LED 视频显示

    上传时间: 2013-05-19

    上传用户:玉箫飞燕

  • 基于FPGA的高速数据采集存储系统设计.rar

    高速大容量数据采集存储技术在通信、航天、气象、雷达等多个领域中拥有着广泛应用。各领域科技与信息技术不断发展,对数据的采集和传输速率要求越来越高,对数据存储的速度和容量要求也越来越高。高速数据存储主要包括存储介质选取、存储器控制、数据存储和总线应用等,如何实时、高速、连续大量地采集存储数据是一个关键性问题。 本文设计了一种基于FPGA控制的高速数据采集存储系统。该系统选用符合ATA-6规范的IDE硬盘作为数据存储介质,采用RAID0配置的磁盘阵列形式,并配合板载的128MB内存实现对数据的高速大容量稳定存储。 该磁盘阵列同时管理五个IDE硬盘,平均数据流达到250MB/s,峰值传输速率达到500MB/s,也可以扩展更多硬盘构成大容量的磁盘阵列。系统采用PCI-9054桥芯片与计算机连接,可同时存储四路AD数据,可以通过人机交互界面实时监控数据采集情况,在计算机上实现整个磁盘阵列的实时控制。

    标签: FPGA 高速数据 采集

    上传时间: 2013-06-14

    上传用户:2404

  • 基于TMS320F2812的SVPWM控制.rar

    基于TMS320F2812的SVPWM控制

    标签: F2812 SVPWM 2812 320F

    上传时间: 2013-04-24

    上传用户:fyerd

  • 基于FPGA的电力系统谐波检测装置的研制.rar

    随着社会的发展,人们对电力需求特别是电能质量的要求越来越高。但由于非线性负荷大量使用,却带来了严重的电力谐波污染,给电力系统安全、稳定、高效运行带来严重影响,给供用电设备造成危害。如何最大限度的减少谐波造成的危害,是目前电力系统领域极为关注的问题。谐波检测是谐波研究中重要分支,是解决其它相关谐波问题的基础。因此,对谐波的检测和研究,具有重要的理论意义和实用价值。 目前使用的电力系统谐波检测装置,大多基于微处理器设计。微处理器是作为整个系统的核心,它的性能高低直接决定了产品性能的好坏。而这种微处理器为主体构成的应用系统,存在效率低、资源利用率低、程序指针易受干扰等缺点。由于微电子技术的发展,特别是专用集成电路ASIC(ApplicationSpecificIntegratedCircuit)设计技术的发展,使得设计电力系统谐波检测专用的集成电路成为可能,同时为谐波检测装置的硬件设计提供了一个新的发展途径。本文目标就是设计电力系统谐波检测专用集成电路,从而可以实现对电力系统谐波的高精度检测。采用专用集成电路进行谐波检测装置的硬件设计,具有体积小,速度快,可靠性高等优点,由于应用范围广,需求量大,电力系统谐波检测专用集成电路具有很好的应用前景。 本文首先介绍了国内外现行谐波检测标准,调研了电力系统谐波检测的发展趋势;随后根据装置的功能需求,特别是依据其中谐波检测国标参数的测量算法,为系统选定了基于FPGA的SOPC设计方案。 本文分析了电力系统谐波检测专用集成电路的功能模型,对专用集成电路进行了模块划分。定义了各模块的功能,并研究了模块间的连接方式,给出了谐波检测专用集成电路的并行结构。设计了基于FPGA的谐波检测专用集成电路设计和验证的硬件平台。配合专用集成电路的电子设计自动化(EDA)工具构建了智能监控单元专用集成电路的开发环境。 在进行FPGA具体设计时,根据待实现功能的不同特点,分为用户逻辑区域和Nios处理器模块两个部分。用户逻辑区域控制A/D转换器进行模拟信号的采样,并对采样得到的数字量进行谐波分析等运算。然后将结果存入片内的双口RAM中,等待Nios处理器的访问。Nios处理器对数据处理模块的结果进一步处理,得到其各自对应的最终值,并将结果通过串行通信接口发送给上位机。 最后,对设计实体进行了整体的编译、综合与优化工作,并通过逻辑分析仪对设计进行了验证。在实验室条件下,对监测指标的运算结果进行了实验测量,实验结果表明该监测装置满足了电力系统谐波检测的总体要求。

    标签: FPGA 电力系统 谐波检测

    上传时间: 2013-04-24

    上传用户:yw14205

  • 基于FPGA的动态光谱数据采集系统.rar

    近红外光谱法是血液成分无创检测方法中的热点,也是取得成果最多的方法之一。但是,个体差异和测量条件是影响近红外光谱血液成分无创检测的一个较突出的问题。而动态光谱法就是针对这个问题而提出的一种全新的近红外无创血液成分浓度检测方法。它从原理上消除了个体差异和测量条件等对光谱检测的影响,为基于近红外光谱法的血液成分无创检测方法进入临床应用去除了一个较为关键的障碍。因此,本文根据动态光谱检测原理设计了基于FPGA的动态光谱数据采集系统。 在分析了动态光谱数据采集系统的性能要求后,采用DALSA的高性能线阵CCD IL-C6-2048C作为光电转换器件;根据CCD输出数据的高速度和信号微弱及含有噪声等特点,选用了高速、高精度、并带有相关双采样芯片的图像处理芯片AD9826作为模数转换器件;以FPGA及其内嵌的NIOSⅡ处理器作为核心控制器,并用LabVIEW对采集得到的数据进行显示。 在FPGA中,利用Verilog HDL语言编写了CCD和AD9826的控制时序;利用两块双口RAM组成乒乓操作单元,实现高速数据的缓存,避免利用NiosⅡ处理器直接读取时的频繁中断。将NIOSⅡ处理器系统嵌入到FPGA中,实现整个系统的管理。NiOSⅡ处理器利用中断方式读取缓存单元中的数据、经对数变换后传递给计算机。其中缓存数据的读取及对数变换均采用自定义组件的方式将硬件单元添加到NIOSⅡ系统中,编程时直接调用。NIOSⅡ系统通过串口将处理后的数据传递给LabVIEW, LabVIEW对数据简单处理后显示,以实时观察采样数据是否正确。 最后对系统进行了实验测试,实验结果表明,系统能够很好的采集并显示数据,能够初步完成光信号的检测。

    标签: FPGA 动态 光谱数据

    上传时间: 2013-04-24

    上传用户:luyanping

  • 基于DSP和FPGA的数字化开关电源的实用化研究.rar

    文章开篇提出了开发背景。认为现在所广泛应用的开关电源都是基于传统的分立元件组成的。它的特点是频率范围窄、电力小、功能少、器件多、成本较高、精度低,对不同的客户要求来“量身定做”不同的产品,同时几乎没有通用性和可移植性。在电子技术飞速发展的今天,这种传统的模拟开关电源已经很难跟上时代的发展步伐。 随着DSP、ASIC等电子器件的小型化、高速化,开关电源的控制部分正在向数字化方向发展。由于数字化,使开关电源的控制部分的智能化、零件的共通化、电源的动作状态的远距离监测成为了可能,同时由于它的智能化、零件的共通化使得它能够灵活地应对不同客户的需求,这就降低了开发周期和成本。依靠现代数字化控制和数字信号处理新技术,数字化开关电源有着广阔的发展空间。 在数字化领域的今天,最后一个没有数字化的堡垒就是电源领域。近年来,数字电源的研究势头与日俱增,成果也越来越多。虽然目前中国制造的开关电源占了世界市场的80%以上,但都是传统的比较低端的模拟电源。高端市场上几乎没有我们份额。 本论文研究的主要内容是在传统开关电源模拟调节器的基础上,提出了一种新的数字化调节器方案,即基于DSP和FPGA的数字化PID调节器。论文对系统方案和电路进行了较为具体的设计,并通过测试取得了预期结果。测试证明该方案能够适合本行业时代发展的步伐,使系统电路更简单,精度更高,通用性更强。同时该方案也可用于相关领域。 本文首先分析了国内外开关电源发展的现状,以及研究数字化开关电源的意义。然后提出了数字化开关电源的总体设计框图和实现方案,并与传统的开关电源做了较为详细的比较。本论文的设计方案是采用DSP技术和FPGA技术来做数字化PID调节,通过数字化PID算法产生PWM波来控制斩波器,控制主回路。从而取代传统的模拟PID调节器,使电路更简单,精度更高,通用性更强。传统的模拟开关电源是将电流电压反馈信号做PID调节后--分立元器件构成,采用专用脉宽调制芯片实现PWM控制。电流反馈信号来自主回路的电流取样,电压反馈信号来自主回路的电压采样。再将这两个信号分别送至电流调节器和电压调节器的反相输入端,用来实现闭环控制。同时用来保证系统的稳定性及实现系统的过流过压保护、电流和电压值的显示。电压、电流的给定信号则由单片机或电位器提供。再次,文章对各个模块从理论和实际的上都做了仔细的分析和设计,并给出了具体的电路图,同时写出了软件流程图以及设计中应该注意的地方。整个系统由DSP板和ADC板组成。DSP板完成PWM生成、PID运算、环境开关量检测、环境开关量生成以及本地控制。ADC板主要完成前馈电压信号采集、负载电压信号采集、负载电流信号采集、以及对信号的一阶数字低通滤波。由于整个系统是闭环控制系统,要求采样速率相当高。本系统采用FPGA来控制ADC,这样就避免了高速采样占用系统资源的问题,减轻了DSP的负担。DSP可以将读到的ADC信号做PID调节,从而产生PWM波来控制逆变桥的开关速率,从而达到闭环控制的目的。 最后,对数字化开关电源和模拟开关电源做了对比测试,得出了预期结论。同时也提出了一些需要改进的地方,认为该方案在其他相关行业中可以广泛地应用。模拟控制电路因为使用许多零件而需要很大空间,这些零件的参数值还会随着使用时间、温度和其它环境条件的改变而变动并对系统稳定性和响应能力造成负面影响。数字电源则刚好相反,同时数字控制还能让硬件频繁重复使用、加快上市时间以及减少开发成本与风险。在当前对产品要求体积小、智能化、共通化、精度高和稳定度好等前提条件下,数字化开关电源有着广阔的发展空间。本系统来基本上达到了设计要求。能够满足较高精度的设计要求。但对于高精度数字化电源,系统还有值得改进的地方,比如改进主控器,提高参考电压的精度,提高采样器件的精度等,都可以提高系统的精度。 本系统涉及电子、通信和测控等技术领域,将数字PID算法与电力电子技术、通信技术等有机地结合了起来。本系统的设计方案不仅可以用在电源控制器上,只要是相关的领域都可以采用。

    标签: FPGA DSP 数字化

    上传时间: 2013-06-29

    上传用户:dreamboy36

  • 16bit音频过采样DAC的FPGA设计实现.rar

    基于∑-△噪声整形技术和过采样技术的数模转换器(DAC)可以可靠地把数字信号转换成为高精度的模拟信号。采用这一结构进行数模转换具有诸多优点,例如极低的失配噪声和高的可靠性,便于作为IP模块嵌入到其他芯片系统中等,更重要的是可以得到其他DAC结构所无法达到的精度和动态范围。在高精度测量、音频转换、汽车电子等领域有着广泛的应用价值。 由于非线性和不稳定性的存在,高阶∑-△调制器的设计与实现存在较大的难度。本设计综合大量文献中的经验原则和方法,首先阐述了∑-△调制器的一般原理,并讨论了一般结构调制器的设计过程,然后描述了稳定的高阶高精度调制器的设计流程。根据市场需求,设定了整个设计方案的性能指标,并据此设计了达到16bit精度和满量程输入范围的三阶128倍过采样调制器。 本设计采用∑-△结构,根据系统要求设计了量化器位数、调制器过采样比和阶数。在分析高阶单环路调制器稳定性的基础上,成功设计了六位量化三阶单环路调制器结构。在16比特的输入信号下,达到了90dB左右的信噪比。该设计已经在Cyclone系列FPGA器件下得到硬件实现和验证,并实现了实时音频验证。测试表明,该DAC模块输出信号的信噪比能满足16比特数据转换应用的分辨率要求,并具备良好的兼容性和通用性。 本设计可作为IP核广泛地在其他系统中进行复用,具有很强的应用性和一定的创新性。

    标签: FPGA bit DAC

    上传时间: 2013-07-10

    上传用户:chuandalong