虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

a-Channel-Modeling-<b>Sub</b>committee-R

  • Carrier-phase synchronization can be approached in a general manner by estimating the multiplicativ

    Carrier-phase synchronization can be approached in a general manner by estimating the multiplicative distortion (MD) to which a baseband received signal in an RF or coherent optical transmission system is subjected. This paper presents a unified modeling and estimation of the MD in finite-alphabet digital communication systems. A simple form of MD is the camer phase exp GO) which has to be estimated and compensated for in a coherent receiver. A more general case with fading must, however, allow for amplitude as well as phase variations of the MD. We assume a state-variable model for the MD and generally obtain a nonlinear estimation problem with additional randomly-varying system parameters such as received signal power, frequency offset, and Doppler spread. An extended Kalman filter is then applied as a near-optimal solution to the adaptive MD and channel parameter estimation problem. Examples are given to show the use and some advantages of this scheme.

    标签: synchronization Carrier-phase multiplicativ approached

    上传时间: 2013-11-28

    上传用户:windwolf2000

  • We have a group of N items (represented by integers from 1 to N), and we know that there is some tot

    We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.

    标签: represented integers group items

    上传时间: 2016-01-17

    上传用户:jeffery

  • 1) Write a function reverse(A) which takes a matrix A of arbitrary dimensions as input and returns a

    1) Write a function reverse(A) which takes a matrix A of arbitrary dimensions as input and returns a matrix B consisting of the columns of A in reverse order. Thus for example, if A = 1 2 3 then B = 3 2 1 4 5 6 6 5 4 7 8 9 9 8 7 Write a main program to call reverse(A) for the matrix A = magic(5). Print to the screen both A and reverse(A). 2) Write a program which accepts an input k from the keyboard, and which prints out the smallest fibonacci number that is at least as large as k. The program should also print out its position in the fibonacci sequence. Here is a sample of input and output: Enter k>0: 100 144 is the smallest fibonacci number greater than or equal to 100. It is the 12th fibonacci number.

    标签: dimensions arbitrary function reverse

    上传时间: 2016-04-16

    上传用户:waitingfy

  • The LM628/LM629 are dedicated motion-control processors designed for use with a variety of DC and b

    The LM628/LM629 are dedicated motion-control processors designed for use with a variety of DC and brushless DC servo motors

    标签: motion-control processors dedicated designed

    上传时间: 2014-01-23

    上传用户:aa17807091

  • 1. 通过8255A并口来控制LED发光二极管的亮灭。 2. A口控制红灯

    1. 通过8255A并口来控制LED发光二极管的亮灭。 2. A口控制红灯,B口控制黄灯,C口控制绿灯。 3. 输出为0则亮,输出为1则灭。 4. 用8253定时来控制变换时间 。

    标签: 8255A LED 控制 并口

    上传时间: 2013-12-06

    上传用户:cccole0605

  • 【问题描述】 在一个N*N的点阵中

    【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。

    标签: 点阵

    上传时间: 2014-06-21

    上传用户:llandlu

  • 该程序实现两个机器人在一个二维网格中的自动追捕。通过方向键手动控制机器人A走步

    该程序实现两个机器人在一个二维网格中的自动追捕。通过方向键手动控制机器人A走步,机器人B根据设定的追捕或逃避方式自动对机器人A进行追捕或逃避。

    标签: 机器人 程序 二维 方向

    上传时间: 2017-08-31

    上传用户:pkkkkp

  • 利用栈的基本操作实现将任意一个十进制整数N转化为R进制整数。

    #include <stdlib.h> #include<stdio.h> #include <malloc.h> #define stack_init_size 100 #define stackincrement 10 typedef struct sqstack { int *base; int *top; int stacksize; } sqstack; int StackInit(sqstack *s) { s->base=(int *)malloc(stack_init_size *sizeof(int)); if(!s->base) return 0; s->top=s->base; s->stacksize=stack_init_size; return 1; } int Push(sqstack *s,int e) { if(s->top-s->base>=s->stacksize) { s->base=(int *)realloc(s->base,(s->stacksize+stackincrement)*sizeof(int)); if(!s->base) return 0; s->top=s->base+s->stacksize; s->stacksize+=stackincrement; } *(s->top++)=e; return e; } int Pop(sqstack *s,int e) { if(s->top==s->base) return 0; e=*--s->top; return e; } int stackempty(sqstack *s) { if(s->top==s->base) { return 1; } else { return 0; } } int conversion(sqstack *s) { int n,e=0,flag=0; printf("输入要转化的十进制数:\n"); scanf("%d",&n); printf("要转化为多少进制:\n"); scanf("%d",&flag); printf("将十进制数%d 转化为%d 进制是:\n",n,flag); while(n) { Push(s,n%flag); n=n/flag; } while(!stackempty(s)) { e=Pop(s,e); switch(e) { case 10: printf("A"); break; case 11: printf("B"); break; case 12: printf("C"); break; case 13: printf("D"); break; case 14: printf("E"); break; case 15: printf("F"); break; default: printf("%d",e); } } printf("\n"); return 0; } int main() { sqstack s; StackInit(&s); conversion(&s); return 0;                        }

    标签: 整数 基本操作 十进制 转化 进制

    上传时间: 2016-12-08

    上传用户:爱你198

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • java实现大整数运算

    在包 hugeinteger 中创建功能类 HugeInteger,该类用来存放和操作一个不超过 40 位的大整数。 (1) 定义一个构造函数,用来对大整数进行初始化。参数为一个字符串。 (2) 定义 input 成员函数,实现大整数的重新赋值。参数为一个字符串,无返回 值。 (3) 定义 output 成员函数,将大整数输出到屏幕上。无参数无返回值。 (4) 定义 add 成员函数,实现两个大整数的加法。参数为一个 HugeInteger 对 象,无返回值,例如: HugeInteger A = new HugeInteger("12345"); HugeInteger B = new HugeInteger("1234"); A.add(B); 此时,A 为 13579,B 为 1234。 (5) 定义 sub 成员函数,实现两个大整数的减法。参数和返回值同 add 函数。 (6) 定义若干大整数关系运算的成员函数,包括 isEqualTo(等于,=)、 isNotEqualTo(不等于,≠)、isGreaterThan(大于,>)、isLessThan(小 于,<)、isGreaterThanOrEqualTo(大于等于,≥)和 isLessThanOrEqualTo (小于等于,≤)。这些函数的参数为一个 HugeInteger 对象,返回值为一个 布尔类型,表示关系运算的结果,例如: HugeInteger A = new HugeInteger("12345"); HugeInteger B = new HugeInteger("1234"); 那么此时 A.isGreaterThan(B)的结果应当为 True,表示 12345>1234。

    标签: java 整数 运算

    上传时间: 2019-06-01

    上传用户:idealist