The term “ smart grid ” defi nes a self - healing network equipped with dynamic optimiza- tion techniques that use real - time measurements to minimize network losses, maintain Voltage levels, increase reliability, and improve asset management. The operational data collected by the smart grid and its sub - systems will allow system operators to rapidly identify the best strategy to secure against attacks, vulnerability, and so on, caused by various contingencies. However, the smart grid fi rst depends upon identifying and researching key performance measures, designing and testing appropriate tools, and developing the proper education curriculum to equip current and future personnel with the knowledge and skills for deployment of this highly advanced system.
上传时间: 2020-06-07
上传用户:shancjb
Control systems are used to regulate an enormous variety of machines, products, and processes. They control quantities such as motion, temperature, heat flow, fluid flow, fluid pressure, tension, Voltage, and current. Most concepts in control theory are based on having sensors to measure the quantity under control. In fact, control theory is often taught assuming the availability of near-perfect feedback signals. Unfortunately, such an assumption is often invalid. Physical sensors have shortcomings that can degrade a control system.
标签: Observers Control Systems in
上传时间: 2020-06-10
上传用户:shancjb
This design uses Common-Emitter Amplifier (Class A) with 2N3904 Bipolar Junction Transistor. Use “Voltage Divider Biasing” to reduce the effects of varying β (= ic / ib) (by holding the Base Voltage constant) Base Voltage (Vb) = Vcc * [R2 / (R1 + R2)] Use Coupling Capacitors to separate the AC signals from the DC biasing Voltage (which only pass AC signals and block any DC component). Use Bypass Capacitor to maintain the Q-point stability. To determine the value of each component, first set Q-point close to the center position of the load line. (RL is the resistance of the speaker.)
上传时间: 2020-11-27
上传用户:
Multisim官方示例Multisim仿真例程基础电路范例135例合集:Chapter 1 - RLC CircuitsChapter 2 - DiodesChapter 3 - TransistorsChapter 4 - AmplifiersChapter 5 - OpampsChapter 6 - FiltersChapter 7 - Miscellaneous CircuitsFundamental Circuits.pdf004 Parallel DC Circuits.ms10005 Series-Parrallel DC Circuit.ms10006 Current Analysis.ms10007 Millmans Theorem 1.ms10008 Millmans Theorem 2.ms10009 Kirchhoff's Current Law.ms10010 Thevenin's Theorem.ms10011 Superposition Principle.ms10012 Nortons Theorem and Source Conversion.ms10013 AC Voltage Measurement.ms10014 Frequency Response of the Series RL Network.ms10015 RL High and Low Pass Filter.ms10016 Frequency Response of the Series RC Network.ms10017 RC High and Low Pass Filter.ms10019 Center-Tapped Full-Wave Rectifier.ms10020 Bridge Rectifier.ms10021 Capacitor-Input Rectifier Filter.ms10022 Diode Clipper (Limiter).ms10023 Diode Clipper.ms10024 Diode Clamper (DC Restorer).ms10025 Diode Voltage Doubler.ms10026 Zener Diode and Voltage Regulation 1.ms10027 Zener Diode and Voltage Regulation 2.ms10028 Zener Diode and Voltage Regulation 3.ms10105 TTL Inverter.ms10107 TTL Gate.ms10109 OR Gate Circuit.ms10111 Over-Damp Circuit.ms10113 Critical-Damp Circuit.ms10115 Series RLC Circuit 1.ms10117 Clapp Oscillator.ms10119 Differential Amplifier 1.ms10121 Differential Amplifier in Common Mode.ms10123 LC Oscillator with Unity Gain Buffer.ms10125 Notch Filter.ms10127 PNP Differential Pair.ms10129 Crossover Network.ms10131 Second-Order High-Pass Chebyshev Filter.ms10133 Third-Order High-Pass Chebyshev Filter.ms10135 Fifth-Order High-Pass Filter.ms10
标签: multisim
上传时间: 2021-10-27
上传用户:trh505
Wherever possible the overall technique used for this series will be "definition by example" withgeneric formulae included for use in other applications. To make stability analysis easy we will usemore than one tool from our toolbox with data sheet information, tricks, rules-of-thumb, SPICESimulation, and real-world testing all accelerating our design of stable operational amplifier (op amp)circuits. These tools are specifically targeted at Voltage feedback op amps with unity-gain bandwidths<20 MHz, although many of the techniques are applicable to any Voltage feedback op amp. 20 MHz ischosen because as we increase to higher bandwidth circuits there are other major factors in closing theloop: such as parasitic capacitances on PCBs, parasitic inductances in capacitors, parasitic inductancesand capacitances in resistors, etc. Most of the rules-of-thumb and techniques were developed not justfrom theory but from the actual building of real-world circuits with op amps <20 MHz.
标签: 运算放大器
上传时间: 2021-11-01
上传用户:
基于TMS320F2812 光伏并网发电模拟装置PROTEL设计原理图+PCB+软件源码+WORD论文文档,硬件采用2层板设计,PROTEL99SE 设计的工程文件,包括完整的原理图和PCB文件,可以做为你的学习设计参考。 摘要:本文实现了一个基于TMS320F2812 DSP芯片的光伏并网发电模拟装置,采用直流稳压源和滑动变阻器来模拟光伏电池。通过TMS320F2812 DSP芯片ADC模块实时采样模拟电网电压的正弦参考信号、光伏电池输出电压、负载电压电流反馈信号等。经过数据处理后,用PWM模块产生实时的SPWM 波,控制MOSFET逆变全桥输出正弦波。本文用PI控制算法实现了输出信号对给定模拟电网电压的正弦参考信号的频率和相位跟踪,用恒定电压法实现了光伏电池最大功率点跟踪(MPPT),从而达到模拟并网的效果。另外本装置还实现了光伏电池输出欠压、负载过流保护功能以及光伏电池输出欠压、过流保护自恢复功能、声光报警功能、孤岛效应的检测、保护与自恢复功能。系统测试结果表明本设计完全满定设计要求。关键词:光伏并网,MPPT,DSP Photovoltaic Grid-connected generation simulator Zhangyuxin,Tantiancheng,Xiewuyang(College of Electrical Engineering, Chongqing University)Abstract: This paper presents a photovoltaic grid-connected generation simulator which is based on TMS320F2812 DSP, with a DC Voltage source and a variable resistor to simulate the characteristic of photovoltaic cells. We use the internal AD converter to real-time sampling the referenced grid Voltage signal, outputting Voltage of photovoltaic, feedback outputting Voltage and current signal. The PWM module generates SVPWM according to the calculation of the real-time sampling data, to control the full MOSFET inverter bridge output sine wave. We realized that the output Voltage of the simulator can track the frequency and phase of the referenced grid Voltage with PI regulation, and the maximum photovoltaic power tracking with constant Voltage regulation, thereby achieved the purpose of grid-connected simulation. Additionally, this device has the over-Voltage and over-current protection, audible and visual alarm, islanding detecting and protection, and it can recover automatically. The testing shows that our design is feasible.Keywords: Photovoltaic Grid-connected,MPPT,DSP 目录引言 11. 方案论证 11.1. 总体介绍 11.2. 光伏电池模拟装置 11.3. DC-AC逆变桥 11.4. MOSFET驱动电路方案 21.5. 逆变电路的变频控制方案 22. 理论分析与计算 22.1. SPWM产生 22.1.1. 规则采样法 22.1.2. SPWM 脉冲的计算公式 32.1.3. SPWM 脉冲计算公式中的参数计算 32.1.4. TMS320F2812 DSP控制器的事件管理单元 42.1.5. 软件设计方法 62.2. MPPT的控制方法与参数计算 72.3. 同频、同相的控制方法和参数计算 8
标签: tms320f2812 光伏 并网发电 模拟 protel pcb
上传时间: 2021-11-02
上传用户:
FFeeaattuurreess Input Voltage range: 2.2 to 6V Programmable LED Current Drives LEDs Up to 27V Switching Frequency:up to 800KHz Wide dimming frequency range: 20KHz~ 360 KHz Programmable OverVoltage Protection Tiny SOP8/PP Package
标签: HX3248C
上传时间: 2021-11-05
上传用户:aben
Wide 2.2V to 6V Input Voltage Range 0.20V FB adjustable LED drive current Directly drive 9 Series 1W LED at VIN>=6V Fixed 800KHz Switching Frequency Max. 3A Switching Current Capability Up to 92% efficiency Excellent line and load regulation EN PIN TTL shutdown capability Internal Optimize Power MOSFET
标签: sc3633
上传时间: 2021-11-05
上传用户:d1997wayne
2.7V to 5.5V input Voltage Range Efficiency up to 96% 24V Boost converter with 12A switch current Limit 600KHz fixed Switching Frequency Integrated soft-start Thermal Shutdown Under Voltage Lockout Support external LDO auxiliary power supply 8-Pin SOP-PP PackageAPPLICATIONSPortable Audio Amplifier Power SupplyPower BankQC 2.0/Type CWireless ChargerPOS Printer Power SupplySmall Motor Power Supply
标签: XR2981
上传时间: 2021-11-05
上传用户:
使用主流buck降压芯片设计双轨电源Creating a Split-Rail Power Supply With a Wide Input Voltage Buck Regulator
标签: 电源
上传时间: 2021-11-07
上传用户:20125101110