📚 Svm技术资料

📦 资源总数:566
💻 源代码:7089
支持向量机(SupportVectorMachine,SVM)是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)[1-3]。

🔥 Svm热门资料

查看全部566个资源 »

在实际应用中的分类数据往往是非平衡数据,少数类别的数据可能有很大的分类代价。分类性能不仅要考虑分类精度,同时要考虑分类代价。该文扩展了支持向量机(SVM)学习方法,对于以高斯核为核函数时的少数类和多数...

⬇️ 10 次下载

支持向量机(SVM)理论建立在结构风险最小化原理基础上,对非线性、高维数的小样本问题有非常好的分类效果和学习推广能力。本文设计了基于支持向量机的车型识别系统,系统通过对摄像机采集的视频图像进行...

👤 ttalli ⬇️ 10 次下载

针对微生物发酵过程的建模与优化控制问题,利用支持向量机理论进行发酵过程的建模,并提出采用粒子群优化算法对支持向量机建模过程中的重要参数进行优化调整。仿真结果表明参数优化调整后得到的模型能取得更...

👤 wangshoupeng199 ⬇️ 6 次下载

💻 Svm源代码

查看更多 »
📂 Svm资料分类