利用C++解决CAGD中的连续的三次B样条插值问题
上传时间: 2013-12-22
上传用户:silenthink
b tree code for index in the database design
标签: database design index tree
上传时间: 2016-02-03
上传用户:z1191176801
可以进行曲线回归拟合算法的四参数算法。函数为 y = (a-d)/(1+(x/c)^b) +d . ec50.m 为其主要函数
上传时间: 2016-02-04
上传用户:我干你啊
用Jacobi叠待法解线性方程组 function Jacobi(A,b,n,x0,e,N)
上传时间: 2016-02-04
上传用户:coeus
b样条算法 b样条算法 b样条算法
标签: 算法
上传时间: 2013-12-05
上传用户:sssl
二分法求一个未知数方程的根f(x)=0,x属于[a,b],除了显示每次计算的小区间外,还根据给定的精度计算了所需的次数k
上传时间: 2016-02-05
上传用户:fredguo
本程序是完成一个函数计算器的功能,通过输入表达式,然输入表达的未知数,则可以计算出表达式的值来:如:a+b+c+sin(a+b),分别输入a ,b ,c 的值,就可以计算表达式的值
上传时间: 2016-02-05
上传用户:xcy122677
How the K-mean Cluster work Step 1. Begin with a decision the value of k = number of clusters Step 2. Put any initial partition that classifies the data into k clusters. You may assign the training samples randomly, or systematically as the following: Take the first k training sample as single-element clusters Assign each of the remaining (N-k) training sample to the cluster with the nearest centroid. After each assignment, recomputed the centroid of the gaining cluster. Step 3 . Take each sample in sequence and compute its distance from the centroid of each of the clusters. If a sample is not currently in the cluster with the closest centroid, switch this sample to that cluster and update the centroid of the cluster gaining the new sample and the cluster losing the sample. Step 4 . Repeat step 3 until convergence is achieved, that is until a pass through the training sample causes no new assignments.
标签: the decision clusters Cluster
上传时间: 2013-12-21
上传用户:gxmm
聊天室用WINSOCKET来做的聊天室实现B/S的聊天获取IP地址
上传时间: 2016-02-06
上传用户:gundan
% SSOR预处理的共轭梯度法求解方程Ax=b % 输入参数说明 % A 正定矩阵[n*n] % b 右边向量 % omega SSOR预处理参数(0--2) % Times 迭代次数 % errtol 给定误差终止条件 % %输出参数 % NewX 方程Ax=b的x近似解 % avgerr 求解的当前平均绝对误差
上传时间: 2013-12-19
上传用户:一诺88