虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

STM32z编码器增量式

  • GEMS压力变送器3000系列-超高压变送器

    6 GEMS压力变送器3000系列-超高压变送器 GEMS压力变送器3000的行业应用: 船舶、工程机械 产品特点: ■工作压力可高达10,000PSI ■高精度-在整个应用过程中,精度在±0.15%之内 ■高稳定性-长期漂移≤0.05%FS/6年 ■高的抗震动性能-采用了薄膜溅射式设计,取消了易破的连接线 GEMS压力变送器3000的性能参数 精度 0.15%FS 重复性 0.03%FS 长期稳定性 0.06%F.S/年 压力范围 0-500、1000、2000、3000、5000、6000、7500、10,000psi 耐压 2xF.S,15,000PSI,Max. 破裂压力 7xFS 4xFS,对于10,000psi 疲劳寿命 108次满量程循环 零点公差 0.5%F.S 量程公差 0.5%F.S,响应时间0.5毫秒 温度影响 温漂 1.5%FS(-20℃到80℃) 2%FS(-40℃到100℃) 2.7%FS(-55℃到120℃) GEMS压力变送器3000的环境参数 振动 正弦曲线,峰值70g,5~5000HZ(根据MIL-STD810,514.2方法程序I) EMC 30V/m(100V/m Survivability) 电压输出 电路 见PDF文件(3线) 激励 高于满程电压1.5VDC,最大到35VDC@6mA 最小环路电阻 (FS输出/2)Kohms 供电灵敏度 0.01%FS/Volt 电流输出 电路 2线 环路供电电压 24VDC(7-35VDC) 输出 4-20mA 最大环路电阻 (Vs-7)x50Ω 供电灵敏度 0.01%FS/V 比率输出 输出 0.5v到4.5v(3线)@5VDC供电 输出激励电压 5VDC(4.75V-7VDC) GEMS压力变送器3000的物理参数 壳体 IP65代码G(NEMA4);IP67代码F(NEMA6) 接液部件 17-4和15-5不锈钢 电气连接 见订货指南 压力连接 1/4″NPT或G1/4 重量(约) 110g(电缆重量另加:75g/m) 机械震动 1000g/MIL-STD810,方法516.2,程序Ⅳ 加速度 在任意方向施加100g的稳定加速度时1bar(15psi)量程变送器的输出会波动0.032%FS/g,量程增大到400bar(6000psi)时输出波动会按对数递减至0.0007%FS/g. 认证等级 CE

    标签: GEMS 3000 压力变送器 超高压

    上传时间: 2013-10-09

    上传用户:sdfsdfs1

  • 电阻式温度隔离双输出传送器

    特点(FEATURES) 精确度0.1%满刻度(Accuracy 0.1%F.S.) 多种输入输出选择(Wide selection of input/output range) 三线式接线自动补偿线路阻抗效应(3 wire configuration automatically compensate line resistance effects) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small & High stability)

    标签: 电阻式 温度 传送器 隔离

    上传时间: 2013-10-17

    上传用户:Huge_Brother

  • 一种隔离调压式交流电源的设计制作

        针对电子仪器设备在线试验和自耦调压器使用中出现的用电不安全问题,提出了一种"隔离调压式交流电源"设计与制作方法,给出了原理和设计功能指标,确定了器件(部件)与结构优化组成,通过制作实验和对功能参数的测试,达到了设计要求,并具有很好的安全性。

    标签: 隔离 调压式 交流电源

    上传时间: 2013-10-22

    上传用户:netwolf

  • 基于TMS320F28335的恒流型馈能式电子负载的设计

        针对电源设备出厂老化测试电能浪费问题,设计了一种基于TMS320F28335DSP的恒流型馈能式电子负载。描述了一种原边带箝位二极管的ZVS移相全桥变换器的工作特点,采用了一种简便易行的移相波形数字控制方法;基于DC/DC电压前馈、DC/AC电压电流双环控制方法,研制出一台3.5 kW试验样机。实验结果表明:该系统性能稳定、调节速度快,能很好地满足测试老化及馈网要求。

    标签: F28335 28335 320F TMS

    上传时间: 2013-10-13

    上传用户:yd19890720

  • 反激式变换器设计优化步骤_隔离式闭环设计

    反激变换器的优化

    标签: 反激式变换器 隔离式 闭环

    上传时间: 2013-11-06

    上传用户:cursor

  • 直驱式风力发电系统中TSMC的研究

    分析了将TSMC(双级矩阵变换器)作为直驱式永磁同步风力发电系的全功率变流器,并且分别对TSMC的整流级的PWM调制和逆变级空间矢量调制进行了推导和计算,简要分析了TSMC的换流方法。然后运用MATLAB对整流级和逆变级调制方法和对直驱式风力发电系统的要求进行仿真验证,仿真结果验证了本文的理论分析和调制方法的正确型,说明了TSMC具有调制方法简单、输出电能质量高等优点,同时也说明TSMC非常适合用于直驱式风力发电系统中,并且为进一步地研究TSMC提供了理论基础。

    标签: TSMC 直驱 风力发电系统

    上传时间: 2014-01-02

    上传用户:ouyangtongze

  • 阻容降压式电源

    阻容降压式电源:将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。与变压器降压相比,电容降压(也可理解成电容限流)的电源体积小、经济、可靠、效率高,缺点是不如变压器降压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,本缺点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制成的。  

    标签: 阻容 降压式电源

    上传时间: 2013-11-23

    上传用户:wxqman

  • 中压五电平单元级联变频器的研究与设计

    波形质量更好。论文介绍了五电平功率单元级联变频器的主电路拓扑结构特点、探讨了输入移相整流技术,运用坐标变换的方法推导和分析了单元级联变频器及异步电机矢量控制系统的数学模型。研究和比较了级联式变频器的几种PWM算法的特点,并选取载波相移层叠混合PWM方式为变频器的控制方式。提出了三点式五电平功率单元的开关控制策略,以及单元平衡控制的解决方案。并研究了矢量控制方法在中压级联变频器系统的应用。研究和完成了控制系统的软件、硬件方案设计,对于系统的两级旁路保护与实现、在线故障识别系统,DSP/CPLD冗余控制系统等关键技术进行了研究。同时对采取该变频器供电的异步电机PWM控制系统和异步电机矢量控制系统分别进行了仿真研究,成功研制了中压五电平单元级联变频器样机。在不同负载和不同实验条件下对变频器样机进行了满功率大电流实验,结果表明五电平功率单元级联变频器输出稳定,动态响应好,得到了满意的预期效果。论文最后对研究工作进行了总结,并提出了一些需要进一步探讨和解决的问题。

    标签: 中压 电平 变频器 级联

    上传时间: 2013-11-12

    上传用户:上善若水

  • 主从型IGCT逆变器及其在STATCOM中的应用

    本文针对6KV中压电网三相平衡负载的无功功率补偿,结合二极管箝位多电平逆变器和H桥级联多电平逆变器的特点,提出了一种能够直接并入电网的新型主从式的逆变器结构:主逆变器采用二极管箝位三电平逆变器,从逆变器采用三个H桥(即全桥)逆变器。主逆变器和H桥逆变器采用级联的形式连接,最后构成一个五电平的混联逆变器。从逆变器负责产生一个方波电压,构成输础正弦电压的基本成分:主逆变器产生输出电压的补偿部分以及负责消除低次谐波。对于主逆变器直流侧电容电压的平衡问题,本文提出了一种采用硬件电路平衡的方法,从而降低了PWM调制时控制方法的复杂性。因为集成门极换相晶闸管(IGCT)这种新型电力电子器件具有开关频率高、无缓冲电路、耐压高等优点,主电路选用IGCT作为开关器件。本文详细分析了用于STATCOM的主从型逆变器电路结构,同时给出了电路参数的确定方法,并对STATCOM逆变器输出电压的谐波进行了理论分析。根据本文提出的主从型逆交器结构特点,建立了基于瞬时无功理论的STATCOM系统动态控制模型,并给出了一种解藕反馈控制方法。最后通过仿真结果证明了所提出的这种主从型逆变器STA’rC0^I结构在消除谐波方面的优越性。

    标签: STATCOM IGCT 逆变器 中的应用

    上传时间: 2013-10-31

    上传用户:frank1234

  • Boost变换器的能量传输模式及输出纹波电压分析

    由于Boost变换器的电感位于电路的输入端,通过控制电感电流就可方便地对输入电流实施控制,因此在开关电源中,常被用作功率因数校正(H1C)的前级[1。4】。Boost变换器在低电压、便携式的电子产品领域也应用广泛【5。6J。此外,由于其功率开关管一端与电源共地,其驱动电路设计更容易,因此众多的研究人员一直在不懈地探索Boost变换器拓扑结构的改善措施[7-10]和提高其性能的控制方法[11-12

    标签: Boost 变换器 能量传输

    上传时间: 2013-11-08

    上传用户:hustfanenze