虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Rapid<b>FOR</b>m

  • 数据结构课程设计 数据结构B+树 B+ tree Library

    数据结构课程设计 数据结构B+树 B+ tree Library

    标签: Library tree 数据结构

    上传时间: 2013-12-31

    上传用户:semi1981

  • Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)适用范围: a)APSP(All Pairs Shortest Paths) b)稠密图效果最佳 c)边权可正可负 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法结束:dis即为所有点对的最短路径矩阵 3)算法小结:此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。时间复杂度O(n^3)。 考虑下列变形:如(I,j)∈E则dis[I,j]初始为1,else初始为0,这样的Floyd算法最后的最短路径矩阵即成为一个判断I,j是否有通路的矩阵。更简单的,我们可以把dis设成boolean类型,则每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”来代替算法描述中的蓝色部分,可以更直观地得到I,j的连通情况。

    标签: Floyd-Warshall Shortest Pairs Paths

    上传时间: 2013-12-01

    上传用户:dyctj

  • Data Structures and Algorithms with Object-Oriented Design Patterns in Java Bruno R. Preiss B.A.S

    Data Structures and Algorithms with Object-Oriented Design Patterns in Java Bruno R. Preiss B.A.Sc., M.A.Sc., Ph.D., P.Eng. Associate Professor Department of Electrical and Computer Engineering University of Waterloo, Waterloo, Canada

    标签: B.A.S R. Object-Oriented Algorithms

    上传时间: 2017-03-07

    上传用户:z754970244

  • 键盘任意输入一个稀疏矩阵A(m*n)

    键盘任意输入一个稀疏矩阵A(m*n),采用三元组存储方法求其转置矩阵B(n*m),并用快速转置算法实现该操作。

    标签: 键盘 输入 稀疏 矩阵

    上传时间: 2013-12-08

    上传用户:lingzhichao

  • (1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A

    (1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A→sae (3) 、将魔王语言B(ehnxgz)B解释成人的语言.每个字母对应下列的语言.

    标签: 字母 tAdA 语言 词汇

    上传时间: 2013-12-30

    上传用户:ayfeixiao

  • 1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现

    1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题

    标签: 移动 发现

    上传时间: 2016-07-25

    上传用户:gxrui1991

  • 1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK

    1. 下列说法正确的是 ( ) A. Java语言不区分大小写 B. Java程序以类为基本单位 C. JVM为Java虚拟机JVM的英文缩写 D. 运行Java程序需要先安装JDK 2. 下列说法中错误的是 ( ) A. Java语言是编译执行的 B. Java中使用了多进程技术 C. Java的单行注视以//开头 D. Java语言具有很高的安全性 3. 下面不属于Java语言特点的一项是( ) A. 安全性 B. 分布式 C. 移植性 D. 编译执行 4. 下列语句中,正确的项是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f

    标签: Java A. B. C.

    上传时间: 2017-01-04

    上传用户:netwolf

  • 汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation

    汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C

    标签: the animation Simulate movement

    上传时间: 2017-02-11

    上传用户:waizhang

  • 将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言

    将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)

    标签: 语言 抽象 字母

    上传时间: 2013-12-19

    上传用户:aix008

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789