本书是一本广受好评的Cassandra图书。与传统的关系型数据库不同,Cassandra是一种开源的分布式存储系统。书中介绍了它无中心架构、高可用、无缝扩展等引人注目的特点,讲述了如何安装、配置Cassandra及如何在其上运行实例,还介绍了对它的监控、维护和性能调优手段,同时还涉及了Cassandra相关的集成工具Hadoop及其类似的其他NoSQL数据库。 本书适合数据库开发人员与网站开发者阅读。
标签: Cassandra
上传时间: 2016-11-07
上传用户:rolyer
机器人操作的数学导论 原书名:A Mathematical Introduction To Robotic Manipula-tion 原著由美国CRC出版社于1994年出版。是关于机器人操作理论的一本专著。作者:[美]理查德.摩雷 [中]李泽湘 [美]夏恩卡.萨思特里 译者:徐卫良 钱瑞明 本书在综合大量的技术文献资料基础上,结合作者从事的研究工作,从数学角度系统地论述了机器人操作的运动学、动力学、控制及运动规划。本书内容反映了近年来机器人领域的主要研究成果。本书共九章,包括绪论、刚体运动、机器人运动学、机器人动力学及控制、多指手运动学、机器人手的动力学及控制、机器人系统的非完整约束、非完整运动规划和机器人操作的研究展望。第二章至第八章含有丰富的实例,并附有小结和大量的习题。本书可作为有关专业研究生的教材,也可供从事机器、自动控制等领域工作的科研和工程技术人员参考。
上传时间: 2016-11-14
上传用户:风尘寻真
数电课程设计 multisim 武汉理工大学 八位数字抢答器 最后完全版 1. 抢答器同时供8名选手或8个代表队比赛,分别用8个按钮S0 ~ S7表示。 2. 设置一个系统清除和抢答控制开关S,该开关由主持人控制。 3. 抢答器具有锁存与显示功能。即选手按动按钮,锁存相应的编号,并在优先抢答选手 的编号一直保持到主持人将系统清除为止。 4. 抢答器具有定时抢答功能,且一次抢答的时间由主持人设定(如,30秒)。当主持人启 动"开始"键后,定时器进行减计时。 5. 参赛选手在设定的时间内进行抢答,抢答有效,定时器停止工作,显示器上显示选手 的编号和抢答的时间,并保持到主持人将系统清除为止。 6. 如果定时时间已到,无人抢答,本次抢答无效,系统通过一个指示灯报警并禁止抢答, 定时显示器上显示00。
上传时间: 2016-11-23
上传用户:BertCC
Aster 与 Betwin 为同类软件, 在win7稳定性上个人认为比Betwin来得问题及好用, 此版本为x6即最高可支持6个用户同时使用一个主机,即一拖6。 已包含: 1.32位安装包 2.64位安装包 3.极简安装说明 4.汉化补丁 5.破解钥匙生成器
上传时间: 2016-12-13
上传用户:1592926293
选择文件 X 无刷直流电动机Matlab仿真建模及模型中S函数
标签: Matlab 无刷直流电动机 仿真建模 S函数 模型 编写
上传时间: 2017-03-13
上传用户:Lincy
定义一个Circle,有数据成员RADIUS(半径),设计带有默认参数值的构造函数,成员函数setCircle(),getArea(),计算圆的面积,构造一个Circle的对象进行测试。
标签: Circl
上传时间: 2017-05-03
上传用户:1554522254121
现代信号处理教程 - 胡广书(清华).pdf
上传时间: 2018-03-01
上传用户:buzhidai
Delphi 下最新的一套3D组件,十分强大,带几十个Demo,做OpenGL开发的朋友可下载看看。 带有安装方法。
上传时间: 2018-03-29
上传用户:zhao9m
一个关于房产中介系统,c#写的,用的是sql2005
上传时间: 2018-04-21
上传用户:纯虚函数
#include <iostream> #include <stdio.head> #include <stdlib.head> #include <string.head> #define ElemType int #define max 100 using namespace std; typedef struct node1 { ElemType data; struct node1 *next; }Node1,*LinkList;//链栈 typedef struct { ElemType *base; int top; }SqStack;//顺序栈 typedef struct node2 { ElemType data; struct node2 *next; }Node2,*LinkQueue; typedef struct node22 { LinkQueue front; LinkQueue rear; }*LinkList;//链队列 typedef struct { ElemType *base; int front,rear; }SqQueue;//顺序队列 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 //1.采用链式存储实现栈的初始化、入栈、出栈操作。 LinkList CreateStack()//创建栈 { LinkList top; top=NULL; return top; } bool StackEmpty(LinkList s)//判断栈是否为空,0代表空 { if(s==NULL) return 0; else return 1; } LinkList Pushead(LinkList s,int x)//入栈 { LinkList q,top=s; q=(LinkList)malloc(sizeof(Node1)); q->data=x; q->next=top; top=q; return top; } LinkList Pop(LinkList s,int &e)//出栈 { if(!StackEmpty(s)) { printf("栈为空。"); } else { e=s->data; LinkList p=s; s=s->next; free(p); } return s; } void DisplayStack(LinkList s)//遍历输出栈中元素 { if(!StackEmpty(s)) printf("栈为空。"); else { wheadile(s!=NULL) { cout<<s->data<<" "; s=s->next; } cout<<endl; } } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 //2.采用顺序存储实现栈的初始化、入栈、出栈操作。 int StackEmpty(int t)//判断栈S是否为空 { SqStack.top=t; if (SqStack.top==0) return 0; else return 1; } int InitStack() { SqStack.top=0; return SqStack.top; } int pushead(int t,int e) { SqStack.top=t; SqStack.base[++SqStack.top]=e; return SqStack.top; } int pop(int t,int *e)//出栈 { SqStack.top=t; if(!StackEmpty(SqStack.top)) { printf("栈为空."); return SqStack.top; } *e=SqStack.base[s.top]; SqStack.top--; return SqStack.top; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 //3.采用链式存储实现队列的初始化、入队、出队操作。 LinkList InitQueue()//创建 { LinkList head; head->rear=(LinkQueue)malloc(sizeof(Node)); head->front=head->rear; head->front->next=NULL; return head; } void deleteEle(LinkList head,int &e)//出队 { LinkQueue p; p=head->front->next; e=p->data; head->front->next=p->next; if(head->rear==p) head->rear=head->front; free(p); } void EnQueue(LinkList head,int e)//入队 { LinkQueue p=(LinkQueue)malloc(sizeof(Node)); p->data=e; p->next=NULL; head->rear->next=p; head->rear=p; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //4.采用顺序存储实现循环队列的初始化、入队、出队操作。 bool InitQueue(SqQueue &head)//创建队列 { head.data=(int *)malloc(sizeof(int)); head.front=head.rear=0; return 1; } bool EnQueue(SqQueue &head,int e)//入队 { if((head.rear+1)%MAXQSIZE==head.front) { printf("队列已满\n"); return 0; } head.data[head.rear]=e; head.rear=(head.rear+1)%MAXQSIZE; return 1; } int QueueLengthead(SqQueue &head)//返回队列长度 { return (head.rear-head.front+MAXQSIZE)%MAXQSIZE; } bool deleteEle(SqQueue &head,int &e)//出队 { if(head.front==head.rear) { cout<<"队列为空!"<<endl; return 0; } e=head.data[head.front]; head.front=(head.front+1)%MAXQSIZE; return 1; } int gethead(SqQueue head)//得到队列头元素 { return head.data[head.front]; } int QueueEmpty(SqQueue head)//判断队列是否为空 { if (head.front==head.rear) return 1; else return 0; } void travelQueue(SqQueue head)//遍历输出 { wheadile(head.front!=head.rear) { printf("%d ",head.data[head.front]); head.front=(head.front+1)%MAXQSIZE; } cout<<endl; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 //5.在主函数中设计一个简单的菜单,分别测试上述算法。 int main() { LinkList top=CreateStack(); int x; wheadile(scanf("%d",&x)!=-1) { top=Pushead(top,x); } int e; wheadile(StackEmpty(top)) { top=Pop(top,e); printf("%d ",e); }//以上是链栈的测试 int top=InitStack(); int x; wheadile(cin>>x) top=pushead(top,x); int e; wheadile(StackEmpty(top)) { top=pop(top,&e); printf("%d ",e); }//以上是顺序栈的测试 LinkList Q; Q=InitQueue(); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q,x); } int e; wheadile(Q) { deleteEle(Q,e); printf("%d ",e); }//以上是链队列的测试 SqQueue Q1; InitQueue(Q1); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q1,x); } int e; wheadile(QueueEmpty(Q1)) { deleteEle(Q1,e); printf("%d ",e); } return 0; }
上传时间: 2018-05-09
上传用户:123456..